Search results for "BOSON"
showing 10 items of 1360 documents
Correlation Dynamics During a Slow Interaction Quench in a One-Dimensional Bose Gas
2014
We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the Bose-Hubbard model using the time-dependent density-matrix renormalization group method. For short distances, correlations follow a power-law with distance with an exponent given by the adiabatic approximation. In contrast, for long distances, correlations decay algebraically with an exponent understood within the sudden quench approximation. This long distance regime is separated from an intermediate distance one by a generalized Lieb-Robinson …
Quantum criticality on a chiral ladder: An SU(2) infinite density matrix renormalization group study
2019
In this paper we study the ground-state properties of a ladder Hamiltonian with chiral $\text{SU}(2)$-invariant spin interactions, a possible first step toward the construction of truly two-dimensional nontrivial systems with chiral properties starting from quasi-one-dimensional ones. Our analysis uses a recent implementation by us of $\text{SU}(2)$ symmetry in tensor network algorithms, specifically for infinite density matrix renormalization group. After a preliminary analysis with Kadanoff coarse graining and exact diagonalization for a small-size system, we discuss its bosonization and recap the continuum limit of the model to show that it corresponds to a conformal field theory, in agr…
Topological Devil's staircase in atomic two-leg ladders
2019
Abstract We show that a hierarchy of topological phases in one dimension—a topological Devil’s staircase—can emerge at fractional filling fractions in interacting systems, whose single-particle band structure describes a topological or a crystalline topological insulator. Focusing on a specific example in the BDI class, we present a field-theoretical argument based on bosonization that indicates how the system, as a function of the filling fraction, hosts a series of density waves. Subsequently, based on a numerical investigation of the low-lying energy spectrum, Wilczek–Zee phases, and entanglement spectra, we show that they are symmetry protected topological phases. In sharp contrast to t…
Adiabatic-antiadiabatic crossover in a spin-Peierls chain
2004
We consider an XXZ spin-1/2 chain coupled to optical phonons with non-zero frequency $\omega_0$. In the adiabatic limit (small $\omega_0$), the chain is expected to spontaneously dimerize and open a spin gap, while the phonons become static. In the antiadiabatic limit (large $\omega_0$), phonons are expected to give rise to frustration, so that dimerization and formation of spin-gap are obtained only when the spin-phonon interaction is large enough. We study this crossover using bosonization technique. The effective action is solved both by the Self Consistent Harmonic Approximation (SCHA)and by Renormalization Group (RG) approach starting from a bosonized description. The SCHA allows to an…
Deformation and mixing of coexisting shapes in neutron-deficient polonium isotopes
2015
Coulomb-excitation experiments are performed with postaccelerated beams of neutron-deficient Po196,198,200,202 isotopes at the REX-ISOLDE facility. A set of matrix elements, coupling the low-lying states in these isotopes, is extracted. In the two heaviest isotopes, Po200,202, the transitional and diagonal matrix elements of the 2+1 state are determined. In Po196,198 multistep Coulomb excitation is observed, populating the 4+1,0+2, and 2+2 states. The experimental results are compared to the results from the measurement of mean-square charge radii in polonium isotopes, confirming the onset of deformation from Po196 onwards. Three model descriptions are used to compare to the data. Calculati…
Measurement and interpretation of the $W$-pair cross-section in $e^+e^-$ interactions at 161 GeV
1997
In 1996 LEP ran at a centre-of-mass energy of 161~GeV, just above the threshold of W-pair production. DELPHI accumulated data corresponding to an integrated luminosity of $9.93 {\mathrm{~pb^{-1}}}$, and observed 29 events that are considered as candidates for W-pair production. From these, a cross-section for the doubly resonant $e^+e^-\to\mathrm{WW}$ process of $3.67~^{+0.97}_{-0.85} \pm 0.19{\mathrm{~pb}}$ has been measured. Within the Standard Model, this cross-section corresponds to a mass of the W-boson of ${\mathrm{80.40~\pm~0.44~(stat.)~\pm~0.09~(syst.) ~\pm 0.03~(LEP)~GeV}}/c^2$. Alternatively, if $m_{\mathrm{W}}$ is held fixed at its current value determined by other experiments, t…
Search for neutral heavy leptons produced in Z decays
1997
Weak isosinglet Neutral Heavy Leptons ($\nu_m$) have been searched for using data collected by the DELPHI detector corresponding to $3.3\times 10^{6}$ hadronic~Z$^{0}$ decays at LEP1. Four separate searches have been performed, for short-lived $\nu_m$ production giving monojet or acollinear jet topologies, and for long-lived $\nu_m$ giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio $BR($Z$^0\rightarrow \nu_m \overline{\nu})$ of about $1.3\times10^{-6}$ at 95\% confidence level for $\nu_m$ masses between 3.5 and 50 GeV/$c^2$. Outside this range the limit weakens rap…
Appearances of pseudo-bosons from Black-Scholes equation
2016
It is a well known fact that the Black-Scholes equation admits an alternative representation as a Schr\"odinger equation expressed in terms of a non self-adjoint hamiltonian. We show how {\em pseudo-bosons}, linear or not, naturally arise in this context, and how they can be used in the computation of the pricing kernel.
Pseudo-bosons and Riesz Bi-coherent States
2016
After a brief review on D-pseudo-bosons we introduce what we call Riesz bi-coherent states, which are pairs of states sharing with ordinary coherent states most of their features. In particular, they produce a resolution of the identity and they are eigenstates of two different annihilation operators which obey pseudo-bosonic commutation rules.
Nuclear structure of97Yin the interacting boson fermion plus broken pair model and the nature of the 3.523 MeV high-spin isomer
1998
Nuclear structure of 97Y is described in the interacting boson fermion plus broken pair model, including quasiproton and quasiproton-two-quasineutron configurations in the basis states. In particular, the yrast bands and the decay of the 27/2- high-spin isomer are accounted for in this approach.