Search results for "BRETTANOMYCES"

showing 10 items of 24 documents

Spoilage potential of Brettanomyces bruxellensis strains isolated from Italian wines

2018

Abstract Brettanomyces bruxellensis is an important wine spoilage agent. In this study a population of Brettanomyces strains isolated from Italian wines was thoroughly investigated to evaluate adaptability to wine conditions and spoilage potential. The presumptive isolates of Brettanomyces were identified at species level with 26S rRNA gene sequencing and species-specific PCR, and subsequently subjected to analysis of intra-species variability through the study of intron splice sites (ISS-PCR). Although, some strains were tracked in wines from different regions, extensive genetic biodiversity was observed within the B. bruxellensis population investigated. All strains were evaluated for the…

0106 biological sciences0301 basic medicineStrain resistanceGenotypeBrettanomyces030106 microbiologyPopulationFood spoilageBrettanomyces bruxellensisBrettanomycesVolatile phenolsWineWine spoilageMicrobial contaminationRibotyping01 natural sciences03 medical and health sciencesVolatile phenolPhenolsSpecies level010608 biotechnologyBrettanomyceFood scienceDNA FungaleducationYeast physiologyPhylogenyWineVolatile Organic Compoundseducation.field_of_studyGenetic diversitybiologydigestive oral and skin physiologyfood and beveragesbiology.organism_classificationItalySettore AGR/16 - MICROBIOLOGIA AGRARIAFood MicrobiologyFood Science
researchProduct

Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine

2017

Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and p-coumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging. For this reason, the endemic diffusion of B. bruxellensis leads to c…

0301 basic medicineCoumaric Acids030106 microbiologyFood spoilageOrganolepticMalatesBrettanomyces bruxellensisBrettanomycesWineFood ContaminationSaccharomyces cerevisiaeEthanol fermentationApplied Microbiology and Biotechnology03 medical and health sciencesSaccharomycesmalolactic fermentation (MLF)PhenolsLactobacillalesMalolactic fermentationLactic acid bacteriaVitisFood scienceWinemakingWinebiologyBrettanomyces bruxellensis; Wine; Saccharomyces; malolactic fermentation (MLF); Lactic acid bacteriadigestive oral and skin physiologyfood and beveragesGeneral MedicineMini-Reviewbiology.organism_classificationYeastBrettanomyces bruxellensisBiological Control AgentsAlcoholsFermentationFood MicrobiologyMLFSettore AGR/16 - Microbiologia AgrariaBiotechnologyApplied Microbiology and Biotechnology
researchProduct

Cells-qPCR as a direct quantitative PCR method to avoid microbial DNA extractions in grape musts and wines.

2017

A novel quantitative PCR assay called Cells-qPCR has been developed for the rapid detection and quantification of yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) directly from grape must and wine that does not require DNA extraction. The assay was tested on Brettanomyces bruxellensis, Saccharomyces cerevisiae, Lactobacillus plantarum, Oenococcus oeni, Acetobacter aceti and Gluconobacter oxydans in culture media, and in white and red grape musts and wines. Standard curves were constructed from DNA and cells for the six target species in all the matrices. Good efficiencies were obtained for both when comparing DNA and cells standard curves. No reaction inhibition was observe…

0301 basic medicineDNA Bacterial030106 microbiologyBrettanomyces bruxellensisWineReal-Time Polymerase Chain ReactionMicrobiologyMicrobiology03 medical and health sciencesYeastsAcetobacterVitisAcetic acid bacteriaDNA FungalOenococcusOenococcus oeniAcetobacter acetiWineChromatographybiologyfood and beveragesGeneral Medicinebiology.organism_classificationDNA extractionFermentationAcetobacterOenococcusFood ScienceLactobacillus plantarumInternational journal of food microbiology
researchProduct

Use of autochthonous yeasts and bacteria in order to control Brettanomyces bruxellensis in wine

2017

Biocontrol strategies for the limitation of undesired microbial developments in foods and beverages represent a keystone toward the goal of more sustainable food systems. Brettanomyces bruxellensis is a wine spoilage microorganism that produces several compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols. To control the proliferation of this yeast, sulfur dioxide is commonly employed, but the efficiency of this compound depends on the B. bruxellensis strain; and it is subject to wine composition and may induce the entrance in a viable, but nonculturable state of yeasts. Moreover, it can also elicit allergic reactions in humans. …

0301 basic medicineMicroorganism030106 microbiologyFood spoilageVolatile phenolsBrettanomyces bruxellensisWineSaccharomyces cerevisiaePlant ScienceBiochemistry Genetics and Molecular Biology (miscellaneous)Aliments Microbiologia03 medical and health sciencesMalolactic fermentationFood scienceNon- SaccharomycesOenologyOenococcus oeniWinelcsh:TP500-660non-Saccharomycesbiology<i>Brettanomyces bruxellensis</i>; volatile phenols; biocontrol; <i>Saccharomyces cerevisiae</i>; non-<i>Saccharomyces</i>; <i>Oenococcus oeni</i>; wineBiocontrolfood and beverageslcsh:Fermentation industries. Beverages. Alcoholbiology.organism_classificationYeastBrettanomyces bruxellensisViniculturaBiocontrol; Brettanomyces bruxellensis; Non- Saccharomyces; Oenococcus oeni; Saccharomyces cerevisiae; Volatile phenols; WineOenococcus oeniSettore AGR/16 - Microbiologia AgrariaFood Science
researchProduct

Comparative morphological characteristics of three Brettanomyces bruxellensis wine strains in the presence/absence of sulfur dioxide

2016

International audience; The red wine spoilage yeast Brettanomyces bruxellensis has been the subject of numerous investigations. Some of these studies focused on spoilage mechanisms, sulfur dioxide tolerance and nutrient requirements. Pseudomycelium formation, although a striking feature of this species, has however been poorly investigated. Furthermore, literature regarding the induction mechanism of pseudomycelium formation in this yeast is limited and lacks clarity, as results published are contradictory. This study elucidates this phenomenon among strains from geographically different areas. Potential environmental cues were investigated, to attain a better understanding of this mechanis…

0301 basic medicine[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition030106 microbiologyFood spoilageBrettanomycesBrettanomyces bruxellensisWineSaccharomyces cerevisiaeMicrobiologyMicrobiologyCell membrane03 medical and health scienceschemistry.chemical_compoundMicroscopy Electron TransmissionmedicineFluorescence microscopeSulfur DioxidePresence absenceSulfur dioxideWineDekkerabiologyGeneral Medicinebiology.organism_classificationYeastmedicine.anatomical_structureMicroscopy FluorescencechemistryBiochemistryFood MicrobiologyMicroscopy Electron ScanningFood ScienceInternational Journal of Food Microbiology
researchProduct

Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomi…

2016

International audience; The spoilage potential of Brettanomyces bruxellensis in wine is strongly connected with the aptitude of this yeast to enter in a Viable But Non Culturable (VBNC) state when exposed to the harsh wine conditions. In this work, we characterized the VBNC behaviour of seven strains of B. bruxellensis representing a regional intraspecific biodiversity, reporting conclusive evidence for the assessment of VBNC as a strain-dependent character. The VBNC behaviour was monitored by fluorescein diacetate staining/flow cytometry for eleven days after addition of 0.4, 0.6, 0.8, 1 and 1.2 mg/L of molecular SO2 (entrance in the VBNC state) and after SO2 removal (exit from the VBNC st…

0301 basic medicine[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionColony Count MicrobialExpressionSaccharomyces-cerevisiaeTranscriptometranscriptomicsHomeostasisSulfur DioxideHeat-Shock Proteinsmedicine.diagnostic_testViabilityCarbohydrate MetabolismOxidation-ReductionVolatile phenol production030106 microbiologyBrettanomyces bruxellensisBrettanomycesBiologyFlow cytometryMicrobiology03 medical and health sciencesPhenolsHeat shock proteinsulphitemedicineSulfiteswineGeneRna-seqBrettanomyces; spoilage; sulphite; transcriptomics; Viable But Not Culturable (VBNC); wine; food science; microbiologyWineMicrobial ViabilityGene Expression ProfilingspoilagemicrobiologyDNA replicationNonculturable bacteriabiology.organism_classificationCampylobacter-jejuniSulfur-dioxideYeastYeastCulture MediaOxidative StressFood MicrobiologyViable But Not Culturable (VBNC)food science[SDV.AEN]Life Sciences [q-bio]/Food and NutritionSettore AGR/16 - Microbiologia Agraria
researchProduct

Fungal biodiversity in a new winery and population dynamics in the winery (Saccharomyces cerevisiae) and in aging cellar (Brettanomyces bruxellensis)

2020

The interspecific fungal biodiversity (Illumina Mi-Seq) and the dynamics of Saccharomyces cerevisiae and Brettanomyces bruxellensis species were studied in a new winery and/or in 3 aging cellars, more specifically on the floor, the walls, the equipment and the outside of the barrels. In the new winery, an initial fungal consortium (yeasts and molds) is already present on all the winery environments before the arrival of the first harvest. This consortium consists of fungal genera such as Aureobasidium, Alternaria, Didymella and Filobasidium. These genera, that persist during two vintages, are not specific to the winery environment and seem to be adapted to natural or anthropic environments …

Brettanomyces bruxellensisNew wineryNouvelle cuverie[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologySaccharomyces cerevisiaeAging cellarBiodiversité fongiqueCave d’élevageFungal biodiversity
researchProduct

Brettanomyces/Dekkera monitoraggio microbiologico e gestione in cantina

2009

Brettanomyces vino
researchProduct

Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration.

2014

Abstract The aim of the present work was to investigate the microbiological, chemical, and sensory characteristics of red wine subjected to post-fermentation maceration that was extended to 90 days. For this purpose, the ‘Aglianico di Taurasi’ grape was used as a case study. The total yeast concentration increased until day 40 of maceration and decreased thereafter, whereas the concentration of lactic acid bacteria slightly increased. Dekkera/Brettanomyces spp. and acetic acid bacteria were not detected. The yeast community was composed of Saccharomyces cerevisiae, Zygosaccharomyces bisporus, Metschnikowia pulcherrima, Hanseniaspora guilliermondii, Hanseniaspora uvarum, Pichia guilliermondi…

BrettanomycesFood HandlingColony CountColony Count MicrobialWineSaccharomyces cerevisiaeMicrobiologyTimechemistry.chemical_compoundMicrobialYeastsBotanyLactic acid bacteriaMaceration (wine)Lactic acid bacteria; Polyphenols; Prolonged post-fermentation maceration; Red wine production; Saccharomyces cerevisiae; Yeasts; Acetic Acid; Alcohols; Colony Count Microbial; Humans; Mycological Typing Techniques; Polyphenols; Saccharomyces cerevisiae; Taste; Time; Vitis; Wine; Yeasts; Fermentation; Food Handling; Food Microbiologyred wine long maceration microorganismsHumansVitisFood scienceRed wine productionAcetic acid bacteriaMycological Typing TechniquesAcetic AcidWinebiologyProlonged post-fermentation macerationfood and beveragesPolyphenolsSettore AGR/15 - Scienze E Tecnologie AlimentariGeneral Medicinebiology.organism_classificationchemistryAlcoholsTasteFermentationFood MicrobiologyHanseniaspora guilliermondiiFermentationMalic acidMetschnikowia pulcherrimaSettore AGR/16 - Microbiologia AgrariaFood ScienceInternational journal of food microbiology
researchProduct

Design and performance testing of a real-time PCR assay for sensitive and reliable direct quantification of Brettanomyces in wine

2009

International audience; Because the yeast Brettanomyces produces volatile phenols and acetic acid, it is responsible for wine spoilage. The uncontrolled accumulation of these molecules in wine leads to sensorial defects that compromise wine quality, The need for a rapid, specific, sensitive and reliable method to detect this spoilage yeast has increased over the last decade. All these requirements are met by real-time PCR. We here propose improvements of existing methods to enhance the robustness of the assay. Six different protocols to isolate DNA from a wine and three PCR mix compositions were tested, and the best method was selected. Insoluble PVPP addition during DNA extraction by a cla…

BrettanomycesFood spoilageBrettanomycesWineBiologyMicrobiologyPolymerase Chain ReactionSensitivity and Specificity[ CHIM ] Chemical Sciences03 medical and health sciencesFood microbiology[CHIM]Chemical SciencesDNA Fungal030304 developmental biologyWine0303 health sciencesChromatography030306 microbiologyReproducibility of Resultsfood and beveragesGeneral MedicineRepeatabilitybiology.organism_classificationDNA extractionYeastStandard curveBiochemistryFood MicrobiologyFood Science
researchProduct