Search results for "Bacterial-infection"

showing 2 items of 2 documents

Constitutive Activation of the Midgut Response to Bacillus thuringiensis in Bt-Resistant Spodoptera exigua

2010

Bacillus thuringiensis is the most effective microbial control agent for controlling numerous species from different insect orders. The main threat for the long term use of B. thuringiensis in pest control is the ability of insects to develop resistance. Thus, the identification of insect genes involved in conferring resistance is of paramount importance. A colony of Spodoptera exigua (Lepidoptera: Noctuidae) was selected for 15 years in the laboratory for resistance to Xentari (TM), a B. thuringiensis-based insecticide, reaching a final resistance level of greater than 1,000-fold. Around 600 midgut ESTs were analyzed by DNA-macroarray in order to find differences in midgut gene expression …

0106 biological sciencesDrug Resistancelcsh:MedicineGene ExpressionInsectaminopeptidase n01 natural sciencesAminopeptidasesHemolysin ProteinsEndotoxinmanduca-sextaBacillus thuringiensisInsect ProteinBiotechnology/Applied Microbiologylcsh:Scienceheliothis-virescensmedia_common0303 health sciencesLarvaMultidisciplinarybiologymediated insect resistanceGenetics and Genomics/Gene ExpressionEcology/Population Ecologybacterial-infectionNoctuidaeInsect ProteinsResearch Articlemedia_common.quotation_subjectAminopeptidaseMolecular Sequence DataBacillus thuringiensisBacterial ProteinSpodopteraSpodopterastem-cell proliferationMicrobiology03 medical and health sciencesMicrobiology/Applied MicrobiologyBacterial ProteinsExiguaBotanyBacillus thuringiensiAnimalscrystal proteinsBIOS Plant Development SystemsAmino Acid Sequencekinase pathways030304 developmental biologyposterior midgutHeliothis virescensBacillus thuringiensis ToxinsAnimaltrichoplusia-nilcsh:RfungiMidgutHemolysin Proteinbiology.organism_classificationEndotoxinsGastrointestinal Tract010602 entomologyPlant Biology/Agricultural Biotechnologylcsh:QSequence Alignment
researchProduct

Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack.

2016

International audience; Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cyto…

0301 basic medicineCytoplasmDisease toleranceSurvivalApoptosismedicine.disease_causeOral infectionHemolysin ProteinsLipid droplet[SDV.IDA]Life Sciences [q-bio]/Food engineeringMitochondrial extrusionIntestinal MucosaSerratia marcescensBacterial-infectionPore-forming toxinbiologyCell DeathMicrovilliPlasma-membrane[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringGut EpitheliumMitochondriamedicine.anatomical_structureDrosophila melanogasterEnterocyteVirulence FactorsVarroidaeSerratia-marcescensBacterial ToxinsVirulenceMicrobiologyMicrobiologySerratia Infections03 medical and health sciencesVirologymedicineAnimalsApical cytoplasmDefense strategyDrosophila cyclin jToxinbiology.organism_classificationLipid dropletsDisease Models AnimalIntestinal Diseases030104 developmental biologyEnterocytesSerratia marcescensParasitologyDigestive SystemCell hostmicrobe
researchProduct