Search results for "Bandwidth"
showing 10 items of 250 documents
A New Front-End High-Resolution Sampling Board for the New-Generation Electronics of EXOGAM2 and NEDA Detectors
2015
19th Real Time Conference (RT) -- MAY 26-30, 2014 -- Nara, JAPAN WOS: 000356458000028 This paper presents the final design and results of the FADC Mezzanine for the EXOGAM (EXOtic GAMma array spectrometer) and NEDA (Neutron Detector Array) detectors. The measurements performed include those of studying the effective number of bits, the energy resolution using HP-Ge detectors, as well as timing histograms and discrimination performance. Finally, the conclusion shows how a common digitizing device has been integrated in the experimental environment of two very different detectors which combine both low-noise acquisition and fast sampling rates. Not only the integration fulfilled the expected …
Incoherent photonic techniques for RF-AWG
2010
The capabilities for RF-AWG in terms of waveform fidelity for three different incoherent photonic methods are revised and discussed: incoherent frequency-to-time mapping, incoherent MWP filtering with N discrete taps, and multi-wavelength pulse compression.
Radiating and nonradiating behavior of hyperbolic-secant, raised-cosine, and Gaussian input light pulses in dispersion-managed fiber systems.
2005
We address the problem of optical light pulses, called dressed pulses, which do not match the stationary pulse profile of a dispersion-managed (DM) fiber system and we theoretically analyze the associated radiation. Comparing hyperbolic-secant, raised-cosine, and Gaussian pulse envelopes, we show that the general radiation figure is highly sensitive to the input pulse profile. As common general features for these pulse profiles, we find a rich variety of dynamical states that includes weak-, moderate-, and strong-radiation states, depending on the map strength of the DM fiber system. We demonstrate the existence of two intervals of map strengths where the emitted radiation is of considerabl…
Rogue wave statistics from a noise-like-pulse laser
2014
We report on experimental conditions in a fiber ring laser where noise-like pulse emission fulfills the rogue wave criteria. We highlight the role of dispersion, and use the dispersive Fourier-transform method to study spectral fluctuations.
Triply resonant coherent four-wave mixing in silicon nitride microresonators
2015
The generation of multiple tones using four-wave mixing (FWM) has been exploited for many applications, ranging from wavelength conversion to frequency comb generation. FWM is a coherent process, meaning that its dynamics strongly depends on the relative phase among the waves involved. The coherent nature of FWM has been exploited for phase-sensitive processing in different waveguide structures, but it has never been studied in integrated microresonators. Waveguides arranged in a resonant way allow for an effective increase in the wavelength conversion efficiency (at the expense of a reduction in the operational bandwidth). In this letter, we show that phase shaping of a three-wave pump pro…
Experimental validation of a novel compact focusing scheme for future energy-frontier linear lepton colliders.
2014
A novel scheme for the focusing of high-energy leptons in future linear colliders was proposed in 2001 [ P. Raimondi and A. Seryi , Phys. Rev. Lett. 86 , 3779 ( 2001 ) ]. This scheme has many advantageous properties over previously studied focusing schemes, including being significantly shorter for a given energy and having a significantly better energy bandwidth. Experimental results from the ATF2 accelerator at KEK are presented that validate the operating principle of such a scheme by demonstrating the demagnification of a 1.3 GeV electron beam down to below 65 nm in height using an energy-scaled version of the compact focusing optics designed for the ILC collider.
Electron–cyclotron–resonance plasma heating with broadband microwave radiation: Anomalous effects
2007
Abstract Affects of microwave bandwidth on the high-charge-states of ion beams extracted from a conventional minimum- B -geometry ECR ion source are first demonstrated. The high-charge-state intensities, produced with broadband microwave radiation are observed to be factors ⩾2 than those produced with narrow bandwidth microwave radiation at the same power level.
Characterization of the global network of optical magnetometers to search for exotic physics (GNOME)
2018
The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network's operation (e.g., data acquisition, format, storage, and diagnostics) are described. Charac…
Quantum Nondemolition Gate Operations and Measurements in Real Time on Fluctuating Signals
2017
We demonstrate an optical quantum nondemolition (QND) interaction gate with a bandwidth of about 100 MHz. Employing this gate, we are able to perform QND measurements in real time on randomly fluctuating signals. Our QND gate relies on linear optics and offline-prepared squeezed states. In contrast to previous demonstrations on narrow sideband modes, our gate is compatible with quantum states temporally localized in a wave-packet mode including non-Gaussian quantum states. This is the cornerstone of realizing quantum error correction and universal gate operations.
Non-Markovian dynamics and steady-state entanglement of cavity arrays in finite-bandwidth squeezed reservoirs
2014
When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing. Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the output field of a non-degenerate parametric oscillator. The resulting non-Markovian dynamics is studied within the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled structures occurs as long a…