Search results for "Bayesian Network"

showing 10 items of 70 documents

Modeling Snow Dynamics Using a Bayesian Network

2015

In this paper we propose a novel snow accumulation and melt model, formulated as a Dynamic Bayesian Network DBN. We encode uncertainty explicitly and train the DBN using Monte Carlo analysis, carried out with a deterministic hydrology model under a wide range of plausible parameter configurations. The trained DBN was tested against field observations of snow water equivalents SWE. The results indicate that our DBN can be used to reason about uncertainty, without doing resampling from the deterministic model. In all brevity, the DBN's ability to reproduce the mean of the observations was similar to what could be obtained with the deterministic hydrology model, but with a more realistic repre…

Computer scienceResamplingMonte Carlo methodRange (statistics)Bayesian networkComputer Science::Artificial IntelligenceSnowRepresentation (mathematics)AlgorithmField (computer science)Dynamic Bayesian networkSimulation
researchProduct

Bayesian metanetworks for modelling user preferences in mobile environment

2003

The problem of profiling and filtering is important particularly for mobile information systems where wireless network traffic and mobile terminal’s size are limited comparing to the Internet access from the PC. Dealing with uncertainty in this area is crucial and many researchers apply various probabilistic models. The main challenge of this paper is the multilevel probabilistic model (the Bayesian Metanetwork), which is an extension of traditional Bayesian networks. The extra level(s) in the Metanetwork is used to select the appropriate substructure from the basic network level based on contextual features from user’s profile (e.g. user’s location). Two models of the Metanetwork are consi…

Computer scienceWireless networkbusiness.industryBayesian probabilityProbabilistic logicMobile computingBayesian networkFeature selectionStatistical modelcomputer.software_genreTelecommunications networkThe InternetData miningbusinesscomputer
researchProduct

A Bayesian-optimal principle for learner-friendly adaptation in learning games

2010

Abstract Adaptive learning games should provide opportunities for the student to learn as well as motivate playing until goals have been reached. In this paper, we give a mathematically rigorous treatment of the problem in the framework of Bayesian decision theory. To quantify the opportunities for learning, we assume that the learning tasks that yield the most information about the current skills of the student, while being desirable for measurement in their own right, would also be among those that are efficient for learning. Indeed, optimization of the expected information gain appears to naturally avoid tasks that are exceedingly demanding or exceedingly easy as their results are predic…

Computer sciencebusiness.industryApplied MathematicsE-learning (theory)05 social sciencesBayesian probability050301 educationMulti-task learningMachine learningcomputer.software_genre050105 experimental psychologyTask (project management)0501 psychology and cognitive sciencesAdaptive learningArtificial intelligenceHidden Markov modelAdaptation (computer science)business0503 educationcomputerGeneral PsychologyDynamic Bayesian networkJournal of Mathematical Psychology
researchProduct

Bayesian Metanetwork for Context-Sensitive Feature Relevance

2006

Bayesian Networks are proven to be a comprehensive model to describe causal relationships among domain attributes with probabilistic measure of appropriate conditional dependency. However, depending on task and context, many attributes of the model might not be relevant. If a network has been learned across multiple contexts then all uncovered conditional dependencies are averaged over all contexts and cannot guarantee high predictive accuracy when applied to a concrete case. We are considering a context as a set of contextual attributes, which are not directly effect probability distribution of the target attributes, but they effect on a “relevance” of the predictive attributes towards tar…

Computer sciencebusiness.industryBayesian probabilityProbabilistic logicBayesian networkcomputer.software_genreMachine learningCausalityFormalism (philosophy of mathematics)Probability distributionFeature relevanceData miningArtificial intelligencebusinesscomputer
researchProduct

Automated Uncertainty Quantification Through Information Fusion in Manufacturing Processes

2017

International audience; Evaluation of key performance indicators (KPIs) such as energy consumption is essential for decision-making during the design and operation of smart manufacturing systems. The measurements of KPIs are strongly affected by several uncertainty sources such as input material uncertainty, the inherent variability in the manufacturing process, model uncertainty, and the uncertainty in the sensor measurements of operational data. A comprehensive understanding of the uncertainty sources and their effect on the KPIs is required to make the manufacturing processes more efficient. Towards this objective, this paper proposed an automated methodology to generate a hierarchical B…

Computer scienceinjection molding02 engineering and technologycomputer.software_genreIndustrial and Manufacturing Engineering[SPI]Engineering Sciences [physics]GME0202 electrical engineering electronic engineering information engineeringUncertainty quantificationuncertaintyautomationhierarchicalbusiness.industryBayesian network020207 software engineeringmeta-modelAutomationComputer Science ApplicationsMetamodelingInformation fusionBayesian networkControl and Systems Engineeringsemantic020201 artificial intelligence & image processingData miningbusinesscomputer
researchProduct

Hub-Centered Gene Network Reconstruction Using Automatic Relevance Determination

2012

Network inference deals with the reconstruction of biological networks from experimental data. A variety of different reverse engineering techniques are available; they differ in the underlying assumptions and mathematical models used. One common problem for all approaches stems from the complexity of the task, due to the combinatorial explosion of different network topologies for increasing network size. To handle this problem, constraints are frequently used, for example on the node degree, number of edges, or constraints on regulation functions between network components. We propose to exploit topological considerations in the inference of gene regulatory networks. Such systems are often…

Dynamic network analysisTranscription GeneticMicroarraysSciencePosterior probabilityGene regulatory networkBiologycomputer.software_genreBioinformaticsNetwork topology03 medical and health sciences0302 clinical medicineYeastsGeneticsComputer SimulationGene Regulatory NetworksGene NetworksBiology030304 developmental biologyRegulatory NetworksHyperparameter0303 health sciencesMultidisciplinaryModels GeneticSystems BiologyQuantitative Biology::Molecular NetworksCell CycleQRComputational BiologyBayesian networkGene Expression RegulationROC CurveMedicineData miningcomputerAlgorithms030217 neurology & neurosurgeryCombinatorial explosionBiological networkResearch ArticlePLoS ONE
researchProduct

A Bayesian network model for evacuation time analysis during a ship fire

2013

We present an evacuation model for ships while a fire happens onboard. The model is designed by utilizing Bayesian networks (BN) and then simulated in GeNIe software. In our proposed model, the most important factors that have significant influence on a rescue process and evacuation time are identified and analyzed. By applying the probability distribution of the considered factors collected from the literature including IMO, real empirical data and practical experiences, the trend of the rescue process and evacuation time can be evaluated and predicted using the proposed model. The results of this paper help understanding about possible consequences of influential factors on the security o…

Empirical dataEngineeringSoftwareEmergency managementOperations researchbusiness.industryProcess (engineering)Probability distributionBayesian networkbusiness2013 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE)
researchProduct

A Bayesian Network Model for Fire Assessment and Prediction

2015

Smartphones and other wearable computers with modern sensor technologies are becoming more advanced and widespread. This paper proposes exploiting those devices to help the firefighting operation. It introduces a Bayesian network model that infers the state of the fire and predicts its future development based on smartphone sensor data gathered within the fire area. The model provides a prediction accuracy of 84.79i¾?% and an area under the curve of 0.83. This solution had also been tested in the context of a fire drill and proved to help firefighters assess the fire situation and speed up their work.

EngineeringSpeedupDrillbusiness.industryReal-time computingWearable computerBayesian networkFirefightingContext (language use)State (computer science)businessSimulation
researchProduct

Robust Conditional Independence maps of single-voxel Magnetic Resonance Spectra to elucidate associations between brain tumours and metabolites.

2020

The aim of the paper is two-fold. First, we show that structure finding with the PC algorithm can be inherently unstable and requires further operational constraints in order to consistently obtain models that are faithful to the data. We propose a methodology to stabilise the structure finding process, minimising both false positive and false negative error rates. This is demonstrated with synthetic data. Second, to apply the proposed structure finding methodology to a data set comprising single-voxel Magnetic Resonance Spectra of normal brain and three classes of brain tumours, to elucidate the associations between brain tumour types and a range of observed metabolites that are known to b…

False discovery rateB VitaminsMagnetic Resonance SpectroscopyComputer scienceDirected Acyclic GraphsBiochemistry030218 nuclear medicine & medical imaging0302 clinical medicineMetabolitesMedicine and Health SciencesAmino AcidsQANeurological Tumors0303 health sciencesMultidisciplinaryDirected GraphsOrganic CompoundsBrain NeoplasmsQRTotal Cell CountingBrainMutual informationVitaminsLipidsChemistryConditional independenceOncologyNeurologyPhysical SciencesEngineering and TechnologyMedicineMeningiomaAlgorithmManagement EngineeringAlgorithmsResearch ArticleComputer and Information SciencesScienceCell Enumeration TechniquesGlycineFeature selectionCholinesResearch and Analysis MethodsSynthetic data03 medical and health sciencesInsuranceRobustness (computer science)HumansMetabolomics030304 developmental biologyRisk ManagementOrganic ChemistryChemical CompoundsBayesian networkBiology and Life SciencesCancers and NeoplasmsProteinsBayes TheoremDirected acyclic graphR1MetabolismAliphatic Amino AcidsGraph TheoryMathematicsPLoS ONE
researchProduct

Towards an Assembly Support System with Dynamic Bayesian Network

2022

Due to the new technological advancements and the adoption of Industry 4.0 concepts, the manufacturing industry is now, more than ever, in a continuous transformation. This work analyzes the possibility of using dynamic Bayesian networks to predict the next assembly steps within an assembly assistance training system. The goal is to develop a support system to assist the human workers in their manufacturing activities. The evaluations were performed on a dataset collected from an experiment involving students. The experimental results show that dynamic Bayesian networks are appropriate for such a purpose, since their prediction accuracy was among the highest on new patterns. Our dynamic Bay…

Fluid Flow and Transfer ProcessesTechnologyQH301-705.5TPhysicsQC1-999Process Chemistry and TechnologyGeneral Engineeringdynamic Bayesian networkEngineering (General). Civil engineering (General)assembly assistance systemComputer Science ApplicationsChemistryassembly assistance system; dynamic Bayesian networkGeneral Materials ScienceTA1-2040Biology (General)QD1-999InstrumentationApplied Sciences; Volume 12; Issue 3; Pages: 985
researchProduct