Search results for "Bayesian network"
showing 10 items of 70 documents
Adaptive distributed outlier detection for WSNs.
2014
The paradigm of pervasive computing is gaining more and more attention nowadays, thanks to the possibility of obtaining precise and continuous monitoring. Ease of deployment and adaptivity are typically implemented by adopting autonomous and cooperative sensory devices; however, for such systems to be of any practical use, reliability and fault tolerance must be guaranteed, for instance by detecting corrupted readings amidst the huge amount of gathered sensory data. This paper proposes an adaptive distributed Bayesian approach for detecting outliers in data collected by a wireless sensor network; our algorithm aims at optimizing classification accuracy, time complexity and communication com…
Analysis and modeling of wind directions time series
2013
This work aims at studying some aspects of wind directions in Italy and supplying appropriate models. A comparison is presented between independent mixture and Hidden Markov models, which seem to be appropriate as far as the series we studied.
Pathway analysis of high-throughput biological data within a Bayesian network framework
2011
Abstract Motivation: Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Results: Proposed method takes into account the connectivity and relatedness between nodes of the p…
Path Modeling and Retrieval in Distributed Video Surveillance Databases
2012
We propose a framework for querying a distributed database of video surveillance data in order to retrieve a set of likely paths of a person moving in the area under surveillance. In our framework, each camera of the surveillance system locally pro- cesses the data and stores video sequences in a storage unit and the metadata for each detected person in the distributed database. A pedestrian’s path is formulated as a dynamic Bayesian network (DBN) to model the dependencies between subsequent observa- tions of the person as he makes his way through the camera net- work. We propose a tool by which the analyst can pose queries about where a certain person appeared while moving in the site duri…
A Bayesian-optimal principle for learner-friendly adaptation in learning games
2010
Abstract Adaptive learning games should provide opportunities for the student to learn as well as motivate playing until goals have been reached. In this paper, we give a mathematically rigorous treatment of the problem in the framework of Bayesian decision theory. To quantify the opportunities for learning, we assume that the learning tasks that yield the most information about the current skills of the student, while being desirable for measurement in their own right, would also be among those that are efficient for learning. Indeed, optimization of the expected information gain appears to naturally avoid tasks that are exceedingly demanding or exceedingly easy as their results are predic…
A Physiological Approach for Minimizing Dead Reckoning Velocity Readings Drifts
2018
The evolution of the geo-positioning methods made Dead Reckoning (DR) one of the most important concern due to its performance in indoor pedestrian localization systems. This paper focuses on implementing an approach that relies on physiological parameters to minimize additive velocity error due to noise in pedestrian DR system.
A Bayesian Network Model for Fire Assessment and Prediction
2015
Smartphones and other wearable computers with modern sensor technologies are becoming more advanced and widespread. This paper proposes exploiting those devices to help the firefighting operation. It introduces a Bayesian network model that infers the state of the fire and predicts its future development based on smartphone sensor data gathered within the fire area. The model provides a prediction accuracy of 84.79i¾?% and an area under the curve of 0.83. This solution had also been tested in the context of a fire drill and proved to help firefighters assess the fire situation and speed up their work.
Automated Uncertainty Quantification Through Information Fusion in Manufacturing Processes
2017
International audience; Evaluation of key performance indicators (KPIs) such as energy consumption is essential for decision-making during the design and operation of smart manufacturing systems. The measurements of KPIs are strongly affected by several uncertainty sources such as input material uncertainty, the inherent variability in the manufacturing process, model uncertainty, and the uncertainty in the sensor measurements of operational data. A comprehensive understanding of the uncertainty sources and their effect on the KPIs is required to make the manufacturing processes more efficient. Towards this objective, this paper proposed an automated methodology to generate a hierarchical B…
A Context-Aware System for Ambient Assisted Living
2017
In the near future, the world's population will be characterized by an increasing average age, and consequently, the number of people requiring for a special household assistance will dramatically rise. In this scenario, smart homes will significantly help users to increase their quality of life, while maintaining a great level of autonomy. This paper presents a system for Ambient Assisted Living (AAL) capable of understanding context and user's behavior by exploiting data gathered by a pervasive sensor network. The knowledge inferred by adopting a Bayesian knowledge extraction approach is exploited to disambiguate the collected observations, making the AAL system able to detect and predict…
A Bayesian network model for evacuation time analysis during a ship fire
2013
We present an evacuation model for ships while a fire happens onboard. The model is designed by utilizing Bayesian networks (BN) and then simulated in GeNIe software. In our proposed model, the most important factors that have significant influence on a rescue process and evacuation time are identified and analyzed. By applying the probability distribution of the considered factors collected from the literature including IMO, real empirical data and practical experiences, the trend of the rescue process and evacuation time can be evaluated and predicted using the proposed model. The results of this paper help understanding about possible consequences of influential factors on the security o…