Search results for "Binding"

showing 10 items of 3896 documents

Antibodies against Lewis antigens inhibit the binding of human norovirus GII.4 virus-like particles to saliva but not to intestinal Caco-2 cells.

2016

BACKGROUND: Human noroviruses (NoVs) are the main cause of gastroenteritis worldwide. The most commonly detected NoV strains belong to the genetically diverse GII.4 genotype, with new pandemic variants emerging periodically. Despite extensive efforts, NoV investigation has been hampered by the lack of an effective in vitro cell culture system. However, NoV-derived recombinant virus-like particles (VLPs) resembling empty capsids are good surrogates for analysing NoV antigenicity and virus-ligand interactions. NoV VLPs have been reported to bind to histo-blood group antigens (HBGAs). We have analysed the ability of NoV VLPs derived from GI.1 genotype and from three GII.4 genotype variants, GI…

0301 basic medicineAdultMaleSalivaAntigenicitymedicine.drug_classSwinevirusesVirus AttachmentMonoclonal antibodyImmunofluorescenceVirusMicrobiology03 medical and health sciencesLewis Blood Group Antigensfluids and secretionsAntigenstomatognathic systemGII.4 genotypeHisto-blood group antigens (HBGAs)VirologymedicineAnimalsHumansChildSalivaAutoantibodiesbiologymedicine.diagnostic_testResearchMucinNorovirusvirus diseasesEpithelial CellsMiddle AgedVirology3. Good healthVirus-like particles (VLPs)030104 developmental biologyInfectious DiseasesHuman norovirus (NoV)Host-Pathogen Interactionsbiology.proteinReceptors VirusReceptor bindingFemaleAntibodyCaco-2 Cells
researchProduct

Characterisation of a household norovirus outbreak occurred in Valencia (Spain)

2016

Background Human noroviruses (NoVs) are the main cause of non-bacterial gastroenteritis worldwide. Several studies have linked human susceptibility to NoVs with the expression of histo-blood group antigens (HBGAs). In January 2012, a NoV gastroenteritis outbreak affected a household in Valencia, Spain, and the personal susceptibility to NoV was investigated. Methods To reach this aim 8 members of the affected household were recruited for this study and their secretor status, ABO and Lewis antigens were determined. NoV-specific saliva IgA and serum IgG antibody titers were analyzed. Their capacity to block viral binding to saliva receptors was analyzed, using virus-like particles (VLPs) of t…

0301 basic medicineAdultMaleSalivaGenotypeIgGFUT2030106 microbiologyHisto-blood group antigensBiologymedicine.disease_causeDisease Outbreaks03 medical and health sciencesSecretorFecesfluids and secretionsstomatognathic systemABO blood group systemGenotypemedicineHumansChildSalivaCaliciviridae InfectionsBlood typeBinding assayFamily CharacteristicsNorovirusAntibody titerOutbreakVirus-like particlesMiddle AgedVirologyGastroenteritis030104 developmental biologyInfectious DiseasesSusceptibilitySpainImmunologybiology.proteinNorovirusFemaleAntibodyIgAResearch ArticleBMC Infectious Diseases
researchProduct

Netrin-1 receptor antibodies in thymoma-associated neuromyotonia with myasthenia gravis.

2017

Objective:To identify cell-surface antibodies in patients with neuromyotonia and to describe the main clinical implications.Methods:Sera of 3 patients with thymoma-associated neuromyotonia and myasthenia gravis were used to immunoprecipitate and characterize neuronal cell-surface antigens using reported techniques. The clinical significance of antibodies against precipitated proteins was assessed with sera of 98 patients (neuromyotonia 46, myasthenia gravis 52, thymoma 42; 33 of them with overlapping syndromes) and 219 controls (other neurologic diseases, cancer, and healthy volunteers).Results:Immunoprecipitation studies identified 3 targets, including the Netrin-1 receptors DCC (deleted i…

0301 basic medicineAdultMaleThymomaNeuromyotoniaDeleted in Colorectal CancerThymomaCell Adhesion Molecules NeuronalNerve Tissue ProteinsReceptors Cell SurfaceTransfectionArticle03 medical and health sciences0302 clinical medicineAntigenMyasthenia GravismedicineHumansImmunoprecipitationNerve Growth FactorsReceptorMuscle SkeletalNeural Cell Adhesion MoleculesAgedAutoantibodiesbiologybusiness.industryElectromyographyTumor Suppressor ProteinsCalcium-Binding ProteinsAutoantibodyMembrane ProteinsThymus NeoplasmsMiddle AgedNetrin-1medicine.diseaseDCC ReceptorMagnetic Resonance ImagingMyasthenia gravis030104 developmental biologyHEK293 CellsImmunologybiology.proteinFemaleNeurology (clinical)AntibodybusinessNetrin Receptors030217 neurology & neurosurgeryNeurology
researchProduct

Severe pre-eclampsia is associated with alterations in cytotrophoblasts of the smooth chorion.

2016

Pre-eclampsia (PE), which affects ∼8% of first pregnancies, is associated with faulty placentation. Extravillous cytotrophoblasts (CTBs) fail to differentiate properly, contributing to shallow uterine invasion and deficient spiral artery remodeling. We studied the effects of severe PE (sPE) on the smooth chorion portion of the fetal membranes. The results showed a significant expansion of the CTB layer. The cells displayed enhanced expression of stage-specific antigens that extravillous CTBs normally upregulate as they exit the placenta. Transcriptomics revealed the dysregulated expression of many genes (e.g. placental proteins, markers of oxidative stress). We confirmed an sPE-related incr…

0301 basic medicineAdultSpiral arteryTranscription GeneticPlacentaHuman DevelopmentCTBSExtraembryonic MembranesBiology210Andrology03 medical and health sciences0302 clinical medicineDownregulation and upregulationPre-EclampsiaPregnancyPlacentamedicineHumansPregnancy-Associated Plasma Protein-AMolecular BiologyCytotrophoblastPAPPA1Cell ProliferationFetus030219 obstetrics & reproductive medicineCytotrophoblastPlacentationGene Expression Regulation DevelopmentalPreterm birthChorionPlacentationTrophoblastsOxidative Stress030104 developmental biologymedicine.anatomical_structureImmunologyembryonic structuresKeratinsFemaleCytotrophoblastsTranscriptomeDevelopmental BiologyProtein BindingHumanDevelopment (Cambridge, England)
researchProduct

Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions.

2020

Type 2 diabetes (T2D) is a very prevalent, multisystemic, chronic metabolic disorder closely related to atherosclerosis and cardiovascular diseases. It is characterised by mitochondrial dysfunction and the presence of oxidative stress. Metformin is one of the safest and most effective anti-hyperglycaemic agents currently employed as first-line oral therapy for T2D. It has demonstrated additional beneficial effects, unrelated to its hypoglycaemic action, on weight loss and several diseases, such as cancer, cardiovascular disorders and metabolic diseases, including thyroid diseases. Despite the vast clinical experience gained over several decades of use, the mechanism of action of metformin i…

0301 basic medicineAdvanced glycation end product (AGE)AMP-activated protein kinase (AMPK)endocrine system diseasesglycerol 3-phosphate dehydrogenase (GPD)Clinical Biochemistrytype 1 diabetes (T1D)Type 2 diabetesmTORC1Review Articleelectron transport chain (ETC)PharmacologyMitochondrionmedicine.disease_causeBiochemistry0302 clinical medicineLeukocytesCREB-binding protein (CBP)inner mitochondrial membrane (IMM)lcsh:QH301-705.5lcsh:R5-920cAMP response element-binding (CREB)glucagon-like peptide 1 (GLP-1)type 2 diabetes (T2D)Type 2 diabetesMetforminMetforminMitochondriamedicine.anatomical_structurereactive nitrogen species (RNS)reactive oxygen species (ROS)sirtuin (SIRT)medicine.symptomlcsh:Medicine (General)cardiovascular diseases (CVD)medicine.drugEndotheliumnitric oxide synthase (NOS)polycystic ovary syndrome (PCOS)Pathophysiologyinsulin resistance (IR)superoxide dismutase (SOD)03 medical and health sciencesglycated haemoglobin (HbA1c)medicineorganic cation transporter (OCT)HumansEndotheliumintercellular adhesion molecule-1 (ICAM-1)business.industryoxidative phosphorylation (OXPHOS)Organic Chemistryperoxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)AMPKmedicine.diseaseAtherosclerosisvascular cell adhesion molecule-1 (VCAM-1)Treatment030104 developmental biologylcsh:Biology (General)Mechanism of actionDiabetes Mellitus Type 2Oxidative stressbusinessinsulin receptor substrate (IRS)030217 neurology & neurosurgeryOxidative stress
researchProduct

Indicaxanthin from Opuntia ficus indica (L. Mill) Inhibits Oxidized LDL-Mediated Human Endothelial Cell Dysfunction through Inhibition of NF-κB Activ…

2019

Oxidized low-density lipoproteins (oxLDL) play a pivotal role in the etiopathogenesis of atherosclerosis through the activation of inflammatory signaling events eventually leading to endothelial dysfunction and senescence. In the present work, we investigated the effects of indicaxanthin, a bioavailable, redox-modulating phytochemical from Opuntia ficus indica fruits, with anti-inflammatory activity, against oxLDL-induced endothelial dysfunction. Human umbilical vein cord cells (HUVEC) were stimulated with human oxLDL, and the effects of indicaxanthin were evaluated in a range between 5 and 20 μM, consistent with its plasma level after a fruit meal (7 μM). Pretreatment with indicaxanthin si…

0301 basic medicineAgingArticle SubjectTranscription GeneticCell SurvivalPyridineHuman Umbilical Vein Endothelial Cell030204 cardiovascular system & hematologyPharmacologyBiochemistryUmbilical vein03 medical and health scienceschemistry.chemical_compound0302 clinical medicineSettore BIO/10 - BiochimicamedicineRNA MessengerReactive Nitrogen SpecieEndothelial dysfunctionlcsh:QH573-671CytotoxicityReactive nitrogen specieschemistry.chemical_classificationReactive oxygen specieslcsh:CytologyNF-kappa BOpuntiaHydrogen PeroxideCell BiologyGeneral MedicineNFKB1medicine.diseaseSettore CHIM/08 - Chimica FarmaceuticaUp-RegulationLipoproteins LDLEndothelial stem cell030104 developmental biologychemistryCell Adhesion MoleculeBetaxanthinThiobarbituric Acid Reactive SubstanceReactive Oxygen SpecieOxidation-ReductionIndicaxanthinATP Binding Cassette Transporter 1HumanOxidative Medicine and Cellular Longevity
researchProduct

Acute telomerase components depletion triggers oxidative stress as an early event previous to telomeric shortening

2018

Loss of function of dyskerin (DKC1), NOP10 and TIN2 are responsible for different inheritance patterns of Dyskeratosis congenita (DC; ORPHA1775). They are key components of telomerase (DKC1 and NOP10) and shelterin (TIN2), and play an important role in telomere homeostasis. They participate in several fundamental cellular processes by contributing to Dyskeratosis congenita through mechanisms that are not fully understood. Presence of oxidative stress was postulated to result from telomerase ablation. However, the resulting disturbed redox status can promote telomere attrition by generating a vicious circle, which promotes cellular senescence. This fact prompted us to study if acute loss of …

0301 basic medicineAgingTelomeraseTelomere-Binding ProteinsClinical BiochemistryCell Cycle ProteinsBiologymedicine.disease_causeBiochemistryDyskeratosis CongenitaDyskerin03 medical and health sciencesTelomere HomeostasisRibonucleoproteins Small NucleolarmedicineHumanslcsh:QH301-705.5TelomeraseCellular SenescenceTelomere ShorteningRibonucleoproteinlcsh:R5-920TelomeropathiesOrganic ChemistryNuclear ProteinsShelterinmedicine.diseaseMolecular biologyTelomereCell biologyOxidative Stress030104 developmental biologylcsh:Biology (General)DNA damageRNA InterferenceAntioxidantlcsh:Medicine (General)Oxidative stressDyskeratosis congenitaResearch PaperHeLa CellsRedox Biology
researchProduct

Sodium functions as a negative allosteric modulator of the oxytocin receptor

2017

Abstract The oxytocin receptor, a class A G protein coupled receptor (GPCR), is essentially involved in the physiology of reproduction. Two parameters are crucially important to support high-affinity agonist binding of the receptor: Mg2+ and cholesterol, both acting as positive modulators. Using displacement assays with a high-affinity fluorescent antagonist (OTAN-A647), we now show that sodium functions as a negative allosteric modulator of the oxytocin receptor. In membranes from HEK293 cells stably expressing the oxytocin receptor, oxytocin binding occurred with about 15-fold lower affinity when sodium chloride was increased from 0 to 300 mM, whereas antagonist binding remained largely u…

0301 basic medicineAgonistAllosteric modulatormedicine.drug_classSodiumBiophysicschemistry.chemical_elementBreast NeoplasmsSodium ChlorideOxytocinBiochemistryPotassium Chloride03 medical and health sciencesAllosteric RegulationCell Line TumormedicineHumansAmino Acid SequenceReceptorFluorescent DyesG protein-coupled receptorDose-Response Relationship DrugSequence Homology Amino AcidChemistryCell MembraneCell BiologyOxytocin receptorRecombinant ProteinsCell biologyCholesterolHEK293 Cells030104 developmental biologyOxytocinReceptors OxytocinMutagenesis Site-DirectedCalciumFemaleSequence Alignmenthormones hormone substitutes and hormone antagonistsIntracellularProtein Bindingmedicine.drugBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Taurine potentiates the anticonvulsive effect of the GABAAagonist muscimol and pentobarbital in the immature mouse hippocampus

2019

Objective The high incidence of epileptic seizures in neonates and their frequent refractoriness to pharmacologic therapies require identification of new therapeutical options. Therefore, we investigated whether the modulatory effect of taurine on γ-aminobutyric acid (GABA)A receptors can enhance the anticonvulsive potential of the GABAA receptor agonist muscimol and of the barbiturate pentobarbital. Methods We performed field potential recordings in in toto hippocampus preparations of immature (postnatal days 4-7) C57Bl/6 mouse pups. Spontaneous epileptiform activity was induced by the continuous presence of the potassium channel blocker 4-aminopyridine and the glycinergic antagonist stryc…

0301 basic medicineAgonistTaurinePentobarbitalTaurine bindingmedicine.drug_classGABAA receptorPharmacology03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinenervous systemNeurologychemistryMuscimolBarbituratemedicineNeurology (clinical)Glycine receptor030217 neurology & neurosurgerymedicine.drugEpilepsia
researchProduct

Palmitoylation is a post-translational modification of Alix regulating the membrane organization of exosome-like small extracellular vesicles.

2018

Abstract Background Virtually all cell types have the capacity to secrete nanometer-sized extracellular vesicles, which have emerged in recent years as potent signal transducers and cell-cell communicators. The multifunctional protein Alix is a bona fide exosomal regulator and skeletal muscle cells can release Alix-positive nano-sized extracellular vesicles, offering a new paradigm for understanding how myofibers communicate within skeletal muscle and with other organs. S-palmitoylation is a reversible lipid post-translational modification, involved in different biological processes, such as the trafficking of membrane proteins, achievement of stable protein conformations, and stabilization…

0301 basic medicineAlix (also known as PDCD6IP)Protein ConformationLipoylationLipid BilayersBiophysicsSkeletal muscle cellsCell Cycle ProteinsExosomesBiochemistryExosomeTetraspanin 29Cell Line03 medical and health sciencesExtracellular VesiclesPalmitoylationTetraspaninExtracellularHumansLipid bilayerMuscle SkeletalMolecular BiologyCells CulturedEndosomal Sorting Complexes Required for TransportChemistryVesicleCalcium-Binding ProteinsCell MembraneExtracellular vesicleTetraspaninSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cell biologyExosomeProtein Transport030104 developmental biologyS-palmitoylationMembrane proteinextracellular vesicles (EVs)Skeletal muscle cellProtein Processing Post-TranslationalProtein BindingSignal TransductionBiochimica et biophysica acta. General subjects
researchProduct