Search results for "Biocompatibility"
showing 10 items of 233 documents
Antimicrobial, mechanical and biocompatibility analysis of chlorhexidine digluconate-modified cements
2019
Background The focus of this study was to evaluate the antimicrobial, mechanical properties and biocompatibility of glass ionomer (GICs) modified by Chlorhexidine (CHX). Material and Methods For biocompatibility, 105 male Wistar rats were used, divided into 7 groups (n=15): Group C (Control,Polyethylene), Groups M, M10, M18, and Groups RL, RL10, RL18 (M-Meron and RL-Riva Luting: conventional, and modified with 10%, and 18% CHX, respectively). The tissues were analyzed under optical microscope for different cellular events and time intervals. Antibacterial effect and Shear Bond Strength Test (SBST) were also analyzed. Biocompatibility was analyzed by the Kruskal-Wallis and Dunn tests; SBST o…
<p>Silica Nanocapsules with Different Sizes and Physicochemical Properties as Suitable Nanocarriers for Uptake in T-Cells</p>
2020
Introduction Adoptive T-cell immunotherapy emerged as a powerful and promising cancer therapy, as the problem regarding the immuno-reaction between different donors and recipients can be avoided. However, this approach is challenging. After long cultivation and expansion under laboratory media conditions, T-cells are losing their viability and function due to immune checkpoint proteins, leading to decreased efficiency in killing cancer cells. Therefore, a new strategy to improve T-cell survival and function is needed. With the advantages of nanotechnology and the biocompatibility of silica-based material, silica nanocapsules (SiNCs) provide an ideal delivery system to transport therapeutic …
On the search of the ideal barrier membrane for guided bone regeneration
2018
Background GBRs are essential procedures in implant dentistry and periodontology where barrier membranes play an important role by isolating soft tissue and allowing bone to grow. Not all membranes function the same way, as they differ from their origin and structure, it is important to understand how membranes behave and differ one from others in order to achieve a predictable treatment. Material and methods A systematic search on Medline by two independent reviewers was performed for articles published until July 2017 reporting the characteristics or properties of barrier membranes. The question that preceded the search was designed according to PICO rules. Results A total of 124 articles…
Bone Scaffolds Based on Degradable Vaterite/PEG‐Composite Microgels
2019
Vaterite, a metastable modification of calcium carbonate, embedded in a flexible microgel packaging with adjustable mechanical properties, functionality, and biocompatibility, provides a powerful scaffolding for bone tissue regeneration, as it is easily convertible to bone-like hydroxyapatite (HA). In this study, the synthesis and physical analysis of a packaging material to encapsulate vaterite particles and osteoblast cells into monodisperse, sub-millimeter-sized microgels, is described whereby a systematic approach is used to tailor the microgel properties. The size and shape of the microgels is controlled via droplet-based microfluidics. Key requirements for the polymer system, such as …
Biogenic Selenium Nanoparticles: A Fine Characterization to Unveil Their Thermodynamic Stability
2021
Among the plethora of available metal(loid) nanomaterials (NMs), those containing selenium are interesting from an applicative perspective, due to their high biocompatibility. Microorganisms capable of coping with toxic Se-oxyanions generate mostly Se nanoparticles (SeNPs), representing an ideal and green alternative over the chemogenic synthesis to obtain thermodynamically stable NMs. However, their structural characterization, in terms of biomolecules and interactions stabilizing the biogenic colloidal solution, is still a black hole that impairs the exploitation of biogenic SeNP full potential. Here, spherical and thermodynamically stable SeNPs were produced by a metal(loid) tolerant Mic…
Controlled iontophoretic release of glucocorticoids through epithelial cell monolayers
1998
In the present study the iontophoretic transdermal delivery of three different glucocorticoids through a confluent monolayer of MDCK cells, mimicking biological barriers, was studied. For this experiment an in vitro model with platinum electrodes for iontophoresis and MDCK cells was developed. With this model investigations concerning the biocompatibility of the cells depending on different current densities and the iontophoretic permeation of the three glucocorticoids through the cell monolayer were carried out. The permeation behavior of this living biological barrier should be very similar to the non-living barrier, human stratum corneum. Different current densities (12.74-38.22 microA/c…
Biocompatibility of alginates for grafting: impact of alginate molecular weight.
2003
Optimising microencapsulation technology towards the effective clinical transplantation has created the need for highly biocompatible alginates. Therefore, in this study the biocompatibility of different beads prepared from alginates with varying average molecular weight was examined. In some experiments the beads were covered with a multilayer membrane surrounded by an alginate layer. First of all, we found that beads made of a lower weight average alginate elicted a much stronger fibrotic response compared to beads made of a higher weight average alginate (LV-alginate > MV-alginate). The results were confirmed by the observation that the extent of tissue fibrosis was significantly increas…
Spectroscopic study of the loading of cationic porphyrins by carbon nanohorns as high capacity carriers of photoactive molecules to cells
2019
Carbon nanomaterials are attractive candidates for drug delivery due to their high surface area, ease of functionalisation and biocompatibility. This work describes the spectroscopic monitoring of the loading capacity of oxidised carbon nanohorns for two cationic porphyrins. Addition of the COOH functionalised carbon nanohorns to both meso-tetra(4-N-methylpyridyl) free base (H2TMPyP4) and platinum (PtTMPyP4) porphyrin in aqueous solution results in hypochromism of the Soret band and quenching of the porphyrin emission. These changes are used to monitor the non-covalent binding interactions with the nanohorn surface and determine the surface loading. The colloidal stability of the nanohorns …
Influence of a bioceramic root end material and mineral trioxide aggregates on fibroblasts and osteoblasts
2012
The biocompatibility of materials used in endodontic treatment is of high importance, because they can come in contact with periradicular tissues and there is a risk of possible systemic toxicity. The aim of the present study was to investigate the in vitro reaction to a bioceramic based root end material in comparison to mineral trioxide aggregates (MTA) as the established gold standard.The root end materials grey MTA Angelus (GMTA), white MTA Angelus (WMTA), ProRoot MTA, and EndoSequence Root Repair Material (ERRM) were incubated with human periodontal ligament fibroblasts and osteoblasts (10(4)cells/ml) for up to 96h. Cell proliferation (RFU) was determined by means of the Alamar Blue as…
Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications
2020
Organ-on-chip (OOC) devices are miniaturized devices replacing animal models in drug discovery and toxicology studies. The majority of OOC devices are made from polydimethylsiloxane (PDMS), an elastomer widely used in microfluidic prototyping, but posing a number of challenges to experimentalists, including leaching of uncured oligomers and uncontrolled absorption of small compounds. Here we assess the suitability of polylactic acid (PLA) as a replacement material to PDMS for microfluidic cell culture and OOC applications. We changed the wettability of PLA substrates and demonstrated the functionalization method to be stable over a time period of at least 9 months. We successfully cultured …