Search results for "Biocompatible Materials"

showing 10 items of 243 documents

Microstructure, mechanical characteristics and cell compatibility of β-tricalcium phosphate reinforced with biodegradable Fe–Mg metal phase

2015

The use of beta-tricalcium phosphate (β-TCP) ceramic as a bioresorbable bone substitute is limited to non-load-bearing sites by the material׳s brittleness and low bending strength. In the present work, new biocompatible β-TCP-based composites with improved mechanical properties were developed via reinforcing the ceramic matrix with 30 vol% of a biodegradable iron-magnesium metallic phase. β-TCP-15Fe15Mg and β-TCP-24Fe6Mg (vol%) composites were fabricated using a combination of high energy attrition milling, cold sintering/high pressure consolidation of powders at room temperature and annealing at 400 °C. The materials synthesized had a hierarchical nanocomposite structure with a nanocrystal…

Calcium PhosphatesMaterials scienceIronComposite numberBiomedical EngineeringSinteringBiocompatible Materials02 engineering and technology010402 general chemistryCeramic matrix composite01 natural sciencesCell LineBiomaterialsFlexural strengthMaterials TestingHumansMagnesiumCeramicComposite materialMechanical PhenomenaOsteoblastsNanocompositeEndothelial Cells021001 nanoscience & nanotechnologyMicrostructureNanocrystalline material0104 chemical sciencesMechanics of Materialsvisual_artvisual_art.visual_art_medium0210 nano-technologyJournal of the Mechanical Behavior of Biomedical Materials
researchProduct

Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility.

2017

In this paper, the processing and properties of iron-toughened bioresorbable β-tricalcium phosphate (β-TCP) nanocomposites are reported. β-TCP is chemically similar to bone mineral and thus a good candidate material for bioresorbable bone healing devices; however intrinsic brittleness and low bending strength make it unsuitable for use in load-bearing sites. Near fully dense β-TCP-matrix nanocomposites containing 30vol% Fe, with and without addition of silver, were produced employing high energy attrition milling of powders followed by high pressure consolidation/cold sintering at 2.5GPa. In order to increase pure iron's corrosion rate, 10 to 30vol% silver were added to the metal phase. The…

Calcium PhosphatesMaterials scienceSinteringBioengineeringBiocompatible Materials02 engineering and technology010402 general chemistry01 natural sciencesCorrosionNanocompositesBiomaterialsMetalWeight-BearingBrittlenessFlexural strengthAbsorbable ImplantsMaterials TestingGalvanic cellPressureHumansComposite materialchemistry.chemical_classificationNanocompositePolymer021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of Materialsvisual_artvisual_art.visual_art_medium0210 nano-technologyMaterials scienceengineering. C, Materials for biological applications
researchProduct

Mineralization of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces.

2005

There is a demand for novel bioactive supports in surgery, orthopedics, and tissue engineering. The availability of recombinant silica-synthesizing enzyme (silicatein) opens new possibilities for the synthesis of silica-containing bioactive surfaces under ambient conditions that do not damage biomolecules like proteins. Here it is shown that growth of human osteosarcoma SaOS-2 cells on cluster plates precoated with Type 1 collagen is not affected by additional coating of the plates with the recombinant silicatein and incubation with its enzymatic substrate, tetraethoxysilane (TEOS). However, the enzymatic modification of the plates by biosilica deposition on the protein-coated surface cause…

Calcium PhosphatesMaterials scienceSurface PropertiesBiomedical Engineeringchemistry.chemical_elementBiocompatible MaterialsCalciumMineralization (biology)Collagen Type Ilaw.inventionSubstrate SpecificityBiomaterialsCalcification PhysiologicTissue engineeringIn vivolawCell Line TumormedicineHumansSaos-2 cellsOsteoblastsOsteoblastSilanesCathepsinsIn vitroRecombinant Proteinsmedicine.anatomical_structurechemistryBiochemistryRecombinant DNAJournal of biomedical materials research. Part B, Applied biomaterials
researchProduct

Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics

2008

Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 20…

Calcium PhosphatesMicrobiology (medical)Pore sizeCeramicsStaphylococcus aureusSurface PropertiesMineralogyBiocompatible Materialsmedicine.disease_causeMicrobiologyBacterial AdhesionStaphylococcus epidermidisStaphylococcus epidermidismedicineZeta potentialCeramicPorositybiologyChemistryGeneral MedicineHydrogen-Ion ConcentrationBiphasic calcium phosphatebiology.organism_classificationDurapatiteStaphylococcus aureusvisual_artvisual_art.visual_art_mediumBacteriaNuclear chemistry
researchProduct

Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.

2010

In this study the tissue reaction to five different β-tricalcium phosphate (β-TCP)-based bone substitute materials differing only in size, shape and porosity was analyzed over 60 days, at 3, 10, 15, 30 and 60 days after implantation. Using the subcutaneous implantation model in Wistar rats both the inflammatory response within the implantation bed and the resulting vascularization of the biomaterials were qualitatively and quantitatively assessed by means of standard and special histological staining methods. The data from this study showed that all investigated β-TCP bone substitutes induced the formation of multinucleated giant cells. Changes in size, shape and porosity influenced the int…

Calcium PhosphatesVascular Endothelial Growth Factor AChemokineMaterials scienceCellBiomedical EngineeringNeovascularization PhysiologicBiocompatible MaterialsBiochemistryGiant CellsBiomaterialschemistry.chemical_compoundImplants ExperimentalX-Ray DiffractionIn vivomedicineAnimalsParticle SizeRats WistarMolecular BiologybiologyGranule (cell biology)Acid phosphataseBiomaterialGeneral MedicineAnatomyImmunohistochemistryRatsVascular endothelial growth factormedicine.anatomical_structurechemistryGiant cellOrgan SpecificityBone Substitutesbiology.proteinBiophysicsMicroscopy Electron ScanningBiotechnologyActa biomaterialia
researchProduct

Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine musc…

2012

Abstract Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precurs…

Calcium Phosphateslcsh:Specialties of internal medicineClinical Neurology610 MedizinBiocompatible MaterialsCerasorbHydroxyapatiteOsteogenesislcsh:RC581-951610 Medical sciencesAnimalsSolid-Phase Synthesis TechniquesDentistry(all)GoatsMusclesResearchNanocrystallineSilicon DioxideEctopic bone formationDrug CombinationsDurapatiteß-tricalciumphosphateOtorhinolaryngologyOsteoinductionBone SubstitutesModels AnimalNanoparticlesFemaleNanoBone
researchProduct

Implantation of the modified endocapsular bending ring in pediatric cataract surgery using a viscoadaptive viscoelastic agent.

1999

Cataract surgery and intraocular lens (IOL) implantation in pediatric eyes remain controversial. Using a viscoadaptive viscoelastic agent, we implanted a modified capsular bending ring (CBR) as well as an acrylic IOL with a sharp-optic-edge design in the capsular bag. All operated eyes demonstrated a low postoperative inflammatory reaction and a clinically well-centered IOL. The band-shaped, sharp-edged CBR facilitates the creation of a sharp, discontinuous bend in the equatorial capsule, which prevents anterior and posterior capsule opacification. Combining the viscoadaptive viscoelastic agent and the CBR enhances the safety of primary and secondary posterior chamber IOL implantation in pe…

Capsule Opacificationmedicine.medical_specialtygenetic structuresmedicine.medical_treatmentLens Capsule CrystallineIntraocular lensBiocompatible MaterialsCataract ExtractionProsthesis ImplantationLens Implantation IntraocularOphthalmologymedicineHumansPolymethyl MethacrylateHyaluronic AcidChildPosterior capsule opacificationLenses Intraocularbusiness.industryCapsuleCataract surgeryeye diseasesSensory SystemsSurgeryOphthalmologyTreatment OutcomeCapsular bagSurgerysense organsbusinessPediatric cataractFollow-Up StudiesJournal of cataract and refractive surgery
researchProduct

Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits

2017

[EN] Purpose: To study the influence of scaffold properties on the organization of ¿in vivo¿ cartilage regeneration. Our hypothesis is that stress transmission to the cells seeded inside the scaffold pores or surrounding it, which is highly dependent on the scaffold properties, determine differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. Methods: Four series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells preseeded, were implanted in cartilage defects in rabbits. Subchondral bone was always injured during the surgery in order to allow blood to reach the implantation site an…

Cartilage ArticularHyalinScaffold0206 medical engineeringBiomedical EngineeringMedicine (miscellaneous)Biocompatible MaterialsBioengineering02 engineering and technologyBiomaterialsBiopolymersChondrocytesTissue engineeringIn vivomedicineAnimalsRegenerationTissue engineeringOriginal Research ArticleHyalineScaffoldschemistry.chemical_classificationTissue ScaffoldsGuided Tissue RegenerationRegeneration (biology)CartilageMesenchymal stem cellCell DifferentiationMesenchymal Stem CellsGeneral MedicinePolymerAnatomy021001 nanoscience & nanotechnology020601 biomedical engineeringAnimal modelsDisease Models AnimalCartilagemedicine.anatomical_structureAcrylateschemistryFISICA APLICADAMAQUINAS Y MOTORES TERMICOSRabbits0210 nano-technologyBiomedical engineeringThe International Journal of Artificial Organs
researchProduct

Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers.

2005

A series of polymer and copolymer networks with varying hydrophilicity and distribution of the hydrophilic groups was synthesized and biologically tested with monolayer culture of human chondrocytes in vitro. Cell viability (MTT), proliferation (BrdU incorporation) and aggrecan expression (PG ELISA) were quantified at 7 and 14 days from seeding. Both assays (MTT and BrdU) showed complementary results that are consistent with positive cellular adhesion on the material. When human chondrocytes were cultured on polymer substrates in which the hydrophilic groups were homogeneously distributed, hydrophobic substrates showed higher values in all the biological parameters analysed. Adhesion, proli…

Cartilage ArticularMaterials scienceCell SurvivalSurface PropertiesBiophysicsBioengineeringBiocompatible Materials(Hydroxyethyl)methacrylateMethacrylateBiomaterialschemistry.chemical_compoundChondrocytesPolymer chemistryMaterials TestingCopolymerCell AdhesionHumansViability assayCell adhesionCells CulturedCell Proliferationchemistry.chemical_classificationAdhesionPolymerCells ImmobilizedchemistryChemical engineeringMechanics of MaterialsCeramics and CompositesEthyl acrylateMethacrylatesHydrophobic and Hydrophilic InteractionsBiomaterials
researchProduct

Morphogenetically active scaffold for osteochondral repair (Polyphosphate/alginate/N,O-carboxymethyl chitosan)

2016

Here we describe a novel bioinspired hydrogel material that can be hardened with calcium ions to yield a scaffold material with viscoelastic properties matching those of cartilage. This material consists of a negatively charged biopolymer triplet, composed of morphogenetically active natural inorganic polyphosphate (polyP), along with the likewise biocompatible natural polymers N,O-carboxymethyl chitosan (N,O-CMC) and alginate. The porosity of the hardened scaffold material obtained after calcium exposure can be adjusted by varying the pre-processing conditions. Various compression tests were applied to determine the local (nanoindentation) and bulk mechanical properties (tensile/compressio…

Cartilage ArticularScaffoldlcsh:Diseases of the musculoskeletal systemO-Carboxymethyl chitosanBiocompatible Materials02 engineering and technology01 natural sciencesHydrogel Polyethylene Glycol DimethacrylateChitosanchemistry.chemical_compoundGlucuronic AcidTissue engineeringPolyphosphatesAggrecansTissue ScaffoldsHexuronic AcidsN021001 nanoscience & nanotechnologymedicine.anatomical_structuretissue engineering0210 nano-technologyPorosityAlginatesEpiphyseal platelcsh:Surgeryregenerative medicineengineering.material010402 general chemistryOsteocytesChondrocytesUltimate tensile strengthmedicineHumansRegenerationCollagen Type IIAggrecanCell ProliferationChitosanWound HealingCartilagepolyphosphatelcsh:RD1-811Alkaline Phosphatase0104 chemical sciencesCartilagechemistryengineeringCalciumBiopolymerlcsh:RC925-935Biomedical engineering
researchProduct