Search results for "Biofisica"

showing 2 items of 2 documents

Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser.

2014

Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it underg…

Biologia Strutturale[PHYS]Physics [physics]Quantitative Biology::BiomoleculesPhotolysisTime FactorsLight[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]BiofisicaMyoglobinProtein ConformationLasers[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Dinamica delle ProteineMolecular Dynamics SimulationCrystallography X-RayBiological sciences Biochemistry BiophysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Article[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph][SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry Molecular Biology/BiophysicsAnimalsHorsessense organsPhysics::Chemical Physics
researchProduct

Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy.

2015

International audience; We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (∼70 fs) relaxation preceding a slower (∼400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix

PhotodissociationAbsorption spectroscopyTime resolved spectroscopyInvited ArticlesPhotochemistrySPECIAL TOPIC: BIOLOGY WITH X-RAY LASERS 2chemistry.chemical_compoundX-ray absorption spectralcsh:QD901-999X-ray absorption near edge structureSpectroscopyInstrumentationHemeSpectroscopy[PHYS]Physics [physics]RadiationX-ray optics[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]ChemistryPhotodissociationRelaxation (NMR)ChromophoreCondensed Matter PhysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)MyoglobinBiofisica Dinamica delle proteine Spettroscopia risolta in tempo X-ray free-electron laser Assorbimento di raggi Xlcsh:CrystallographyTime-resolved spectroscopyStructural dynamics (Melville, N.Y.)
researchProduct