Search results for "Biological physics"

showing 10 items of 153 documents

The FRET-based structural dynamics challenge -- community contributions to consistent and open science practices

2020

Single-molecule F\"{o}rster resonance energy transfer (smFRET) has become a mainstream technique for probing biomolecular structural dynamics. The rapid and wide adoption of the technique by an ever-increasing number of groups has generated many improvements and variations in the technique itself, in methods for sample preparation and characterization, in analysis of the data from such experiments, and in analysis codes and algorithms. Recently, several labs that employ smFRET have joined forces to try to bring the smFRET community together in adopting a consensus on how to perform experiments and analyze results for achieving quantitative structural information. These recent efforts includ…

Quantitative Biology - BiomoleculesBiological Physics (physics.bio-ph)FOS: Biological sciencesFOS: Physical sciencesBiomolecules (q-bio.BM)Physics - Biological Physics
researchProduct

Theoretical study of excitation transfer from modified B800 rings of the LH II antenna complex of Rps. acidophila

2002

The recently developed configuration interaction exciton model has been applied to study spectral shifts and B800 to B850 energy transfer rates in a series of modified LH2 light harvesting antenna complexes of the purple bacterium Rhodopseudomonas acidophila. Complexes, where the in vivo B800 bacteriochlorophyll a chromophores are exchanged with different tetrapyrroles including chlorophyll a were studied. Absorption spectra of the modified complexes were simulated by using quantum chemical methods to evaluate site and interaction energies and exciton theory to generate the eigenstates of the chromophore assemblies. Four experimental input parameters: the transition moment of Bchl a, the di…

Quantitative Biology::BiomoleculesPhysics::Biological PhysicsChlorophyll aAbsorption spectroscopyChemistryExcitonTransition dipole momentGeneral Physics and AstronomyDielectricConfiguration interactionChromophorechemistry.chemical_compoundPhysical and Theoretical ChemistryAtomic physicsExcitationPhysical Chemistry Chemical Physics
researchProduct

Alkoxy-styryl DCDHF fluorophores

2010

A photostable dicyanomethylenedihydrofuran fluorophore which contains electron-donating alkoxy groups is described. This chromophore is highly environmentally-sensitive, which is a remarkable property for a fluorescent reporter. Its light excitation also enables, in low viscous solvents, the formation of dark states whose radical or triplet nature is ruled out.

Quantitative Biology::BiomoleculesPhysics::Biological PhysicsFluorophoreFluorescent reporterChemistryGeneral Physics and AstronomyChromophorePhotochemistrychemistry.chemical_compoundSpectrometry FluorescenceDark stateAlcoholsNitrilesAlkoxy groupDark quencherQuantum TheoryLight excitationPhysics::Chemical PhysicsPhysical and Theoretical ChemistryFuransFluorescent DyesPhysical Chemistry Chemical Physics
researchProduct

Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

2011

We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical…

Quantitative Biology::BiomoleculesPhysics::Biological PhysicsNanostructureMaterials scienceMechanical EngineeringConductanceBioengineeringNanotechnologyGeneral ChemistryConical surfaceStructure and functionQuantitative Biology::Subcellular ProcessesNanoporeRectificationMechanics of MaterialsChemical physicsGeneral Materials ScienceSurface chargeNanoporous membraneElectrical and Electronic EngineeringNanotechnology
researchProduct

Probing Quantum Frustrated Systems via Factorization of the Ground State

2009

The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physica…

Quantum phase transitionfrustrationmedia_common.quotation_subjectGeneral Physics and AstronomyFrustrationFOS: Physical sciences01 natural sciences010305 fluids & plasmasFactorizationQuantum mechanics0103 physical sciencesStatistical physicsPhysics - Biological Physics010306 general physicsQuantumCondensed Matter - Statistical MechanicsMathematical Physicsmedia_commonSpin-½PhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Mathematical Physics (math-ph)Closed and exact differential formsCondensed Matter - Other Condensed MatterRange (mathematics)Biological Physics (physics.bio-ph)Condensed Matter::Strongly Correlated ElectronsGround stateQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct

Fluorescence estimation in the framework of the CEFLES2 campaign

2011

International audience; Chlorophyll fluorescence (ChF) is a relevant indicator of the actual plant physiological status. In this article different methods to measure ChF from remote sensing are evaluated: The Fraunhofer Line Discrimination (FLD), theFluorescence Radiative Method (FRM) and the improved Fraunhofer Line Discrimination (iFLD). The three methods have been applied to data acquired in the framework of the CarboEurope, FLEX and Sentinel-2 (CEFLES2) campaign in Les Landes, France in September 2007. Comparing with in situ measurements, the results indicate that the methods that provide the best results are the FLD and the iFLD with root mean square errors (RMSEs) of 0.4 and 0.5 mW m-…

Root mean square010504 meteorology & atmospheric sciences[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]0211 other engineering and technologiesRadiative transfer[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGeneral Earth and Planetary SciencesEnvironmental science02 engineering and technology01 natural sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingInternational Journal of Remote Sensing
researchProduct

Poly-sarcosine and poly(ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations

2018

Nanoparticles coated with hydrophilic polymers often show a reduction in unspecific interactions with the biological environment, which improves their biocompatibility. The molecular determinants of this reduction are not very well understood yet, and their knowledge may help improving nanoparticle design. Here we address, using molecular dynamics simulations, the interactions of human serum albumin, the most abundant serum protein, with two promising hydrophilic polymers used for the coating of therapeutic nanoparticles, poly(ethylene-glycol) and poly-sarcosine. By simulating the protein immersed in a polymer-water mixture, we show that the two polymers have a very similar affinity for the…

SarcosineBiocompatibilityPoly-peptoidlcsh:BiotechnologyBiophysicsFOS: Physical sciencesNanoparticle02 engineering and technologyCondensed Matter - Soft Condensed MatterProtein aggregation010402 general chemistry01 natural sciencesBiochemistryNanoparticle protein coronachemistry.chemical_compoundMolecular dynamicsAdsorptionStructural Biologylcsh:TP248.13-248.65GeneticsmedicinePhysics - Biological Physicschemistry.chemical_classificationBiomolecules (q-bio.BM)MD simulationPolymer021001 nanoscience & nanotechnologyHuman serum albuminPEG0104 chemical sciencesComputer Science ApplicationsQuantitative Biology - BiomoleculeschemistryChemical engineeringBiological Physics (physics.bio-ph)FOS: Biological sciencesSoft Condensed Matter (cond-mat.soft)Poly-sarcosine0210 nano-technologyResearch ArticleBiotechnologymedicine.drug
researchProduct

Low density lipoproteins and human serum albumin as the carriers of squalenoylated drugs: insights from molecular simulations

2018

We have studied the interaction of three clinically promising squalenoylated drugs (gemcitabine-squalene, adenine-squalene, and doxorubicin-squalene) with low-density lipoproteins (LDL) by means of atomistic molecular dynamics simulations. It is shown that all studied squalenoylated drugs accumulate inside the LDL particles. This effect is promoted by the squalene moiety, which acts as an anchor and drives the hydrophilic drugs into the hydrophobic core of the LDL lipid droplet. Our data suggest that LDL particles could be a universal carriers of squalenoylated drugs in the bloodstream. Interaction of gemcitabine-squalene with human serum albumin (HSA) was also studied by ensemble of dockin…

Squalene[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Drug CompoundingPharmaceutical ScienceSerum Albumin Human02 engineering and technologyPlasma protein bindingMolecular Dynamics Simulation010402 general chemistry01 natural sciencesMolecular Docking SimulationDeoxycytidineSqualenechemistry.chemical_compound[ PHYS.PHYS.PHYS-BIO-PH ] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Lipid dropletDrug DiscoverymedicineMoietyHumansComputingMilieux_MISCELLANEOUSDrug CarriersBinding SitesAdenine[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences021001 nanoscience & nanotechnologyHuman serum albuminGemcitabine3. Good health0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryLipoproteins LDLMolecular Docking Simulation[ SDV.SP ] Life Sciences [q-bio]/Pharmaceutical scienceschemistryDocking (molecular)Doxorubicin[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryBiophysicsMolecular MedicineNanoparticles0210 nano-technologyDrug carrierHydrophobic and Hydrophilic Interactionsmedicine.drugProtein Binding
researchProduct

Immune networks: multitasking capabilities near saturation

2013

Pattern-diluted associative networks were introduced recently as models for the immune system, with nodes representing T-lymphocytes and stored patterns representing signalling protocols between T- and B-lymphocytes. It was shown earlier that in the regime of extreme pattern dilution, a system with $N_T$ T-lymphocytes can manage a number $N_B!=!\order(N_T^\delta)$ of B-lymphocytes simultaneously, with $\delta!<!1$. Here we study this model in the extensive load regime $N_B!=!\alpha N_T$, with also a high degree of pattern dilution, in agreement with immunological findings. We use graph theory and statistical mechanical analysis based on replica methods to show that in the finite-connectivit…

Statistics and ProbabilityImmune Network Statistical Mechanics Hopfield Model Parallel RetrievalQuantitative Biology::Tissues and OrgansPhase (waves)FOS: Physical sciencesGeneral Physics and AstronomyInterference (wave propagation)TopologyQuantitative Biology::Cell BehaviorCell Behavior (q-bio.CB)Physics - Biological PhysicsFinite setMathematical PhysicsConnectivityAssociative propertyPhysicsDegree (graph theory)ReplicaStatistical and Nonlinear PhysicsGraph theoryDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksBiological Physics (physics.bio-ph)FOS: Biological sciencesModeling and SimulationQuantitative Biology - Cell BehaviorJournal of Physics A: Mathematical and Theoretical
researchProduct

Dynamics of the Selkov oscillator.

2018

A classical example of a mathematical model for oscillations in a biological system is the Selkov oscillator, which is a simple description of glycolysis. It is a system of two ordinary differential equations which, when expressed in dimensionless variables, depends on two parameters. Surprisingly it appears that no complete rigorous analysis of the dynamics of this model has ever been given. In this paper several properties of the dynamics of solutions of the model are established. With a view to studying unbounded solutions a thorough analysis of the Poincar\'e compactification of the system is given. It is proved that for any values of the parameters there are solutions which tend to inf…

Statistics and ProbabilityPeriodicityQuantitative Biology - Subcellular ProcessesClassical exampleFOS: Physical sciencesDynamical Systems (math.DS)01 natural sciencesModels BiologicalGeneral Biochemistry Genetics and Molecular Biology010305 fluids & plasmassymbols.namesake0103 physical sciencesFOS: MathematicsPhysics - Biological PhysicsMathematics - Dynamical Systems0101 mathematicsSubcellular Processes (q-bio.SC)MathematicsGeneral Immunology and MicrobiologyCompactification (physics)Applied Mathematics010102 general mathematicsMathematical analysisGeneral MedicineMathematical ConceptsKineticsMonotone polygonBiological Physics (physics.bio-ph)FOS: Biological sciencesModeling and SimulationBounded functionOrdinary differential equationPoincaré conjecturesymbolsGeneral Agricultural and Biological SciencesGlycolysisDimensionless quantityMathematical biosciences
researchProduct