Search results for "Biosignature"

showing 3 items of 3 documents

Between a rock and a soft place: the role of viruses in lithification of modern microbial mats.

2021

10 pages; International audience; Stromatolites are geobiological systems formed by complex microbial communities, and fossilized stromatolites provide a record of some of the oldest life on Earth. Microbial mats are precursors of extant stromatolites; however, the mechanisms of transition from mat to stromatolite are controversial and are still not well understood. To fully recognize the profound impact that these ecosystems have had on the evolution of the biosphere requires an understanding of modern lithification mechanisms and how they relate to the geological record. We propose here viral mechanisms in carbonate precipitation, leading to stromatolite formation, whereby viruses directl…

Microbiology (medical)Geologic SedimentsBiogeochemical cycleviral lifestyleEarth sciencevirus–host interactionsGeologic recordMicrobiologyMESH: Host-Parasite InteractionsHost-Parasite InteractionsMESH: Viruses03 medical and health sciencesGeologic time scalebacteriophageVirologylytic/lysogenic cyclevirusesMicrobial matstromatoliteLithification030304 developmental biologyearly Earth0303 health sciencesBacteriabiology030306 microbiologyMESH: Virus Physiological PhenomenamicrobialitesBiosphereexopolymeric substances (EPS)MESH: Geologic Sedimentsbiology.organism_classificationEarly Earthmicrobial matMESH: BacteriaInfectious Diseases[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyStromatolite13. Climate actionCRISPRbiosignaturesVirus Physiological Phenomena
researchProduct

Distribution, redox state and (bio)geochemical implications of arsenic in present day microbialites of Laguna Brava, Salar de Atacama

2018

Understanding how microorganisms adapted to the high arsenic concentration present on early Earth requires understanding of the processes involved in the arsenic biogeochemical cycle operating in living microbial mats. To this end, we investigated a living microbial mat from Laguna Brava (Salar de Atacama, Chile), a hypersaline lake with high arsenic concentration, using an array of conventional geochemical techniques, such as X-ray diffraction, SEM-EDX and Confocal Laser Scanning Microscopy (CLSM), combined with state-of-the-art high resolution scanning imaging techniques, including X-ray micro-fluorescence (μXRF) and X-ray Absorption Near Edge Structure (XANES) mapping. This experimental …

0301 basic medicineBiogeochemical cycleMicroorganism030106 microbiologyOtras Ciencias de la Tierra y relacionadas con el Medio Ambientechemistry.chemical_elementSynchrotron-based X-ray imagingArsenicCiencias de la Tierra y relacionadas con el Medio AmbienteSYNCHROTRON-BASED X-RAY IMAGING03 medical and health sciencesStromatolitesMICROBIAL MATSGeochemistry and Petrology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistryMicrobial matsBiosignatureTrace metalMicrobial matBiosignatureArsenicComputingMilieux_MISCELLANEOUSBIOGEOCHEMICAL CYCLESGeologySorptionHypersaline lakeBiogeochemical cyclesBIOSIGNATURE030104 developmental biologychemistrySTROMATOLITES13. Climate actionEnvironmental chemistryARSENICGeologyCIENCIAS NATURALES Y EXACTAS
researchProduct

Iron isotope signature of magnetofossils and oceanic biogeochemical changes through the Middle Eocene Climatic Optimum.

2021

21 pages; International audience; Magnetotactic bacteria (MTB) intracellularly precipitate magnetite (Fe3O4) crystals that can be preserved in the geological record. When MTB die, the so-called magnetofossils constitute valuable proxies for paleoenvironmental reconstructions and are suspected to represent some of the oldest traces of biomineralization on Earth. Yet, the biogenicity of putative magnetofossils found in ancient terrestrial and extra-terrestrial samples is still largely debated and their significance for past climate still holds uncertainties. Here we studied a sedimentary sequence from the Indian Ocean (ODP Hole 711A) recording the Middle Eocene Climatic Optimum (MECO) through…

Biogeochemical cycle010504 meteorology & atmospheric sciencesGeochemistryTrace elementIron isotopesFe sequential extraction010502 geochemistry & geophysicsMass-independent fractionationHyperthermal01 natural sciencesDiagenesischemistry.chemical_compoundMagnetotactic bacteriaIsotope fractionationMagnetofossilschemistry13. Climate actionGeochemistry and Petrology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistryBiosignatureMECOMagnetofossilGeology0105 earth and related environmental sciencesMagnetite
researchProduct