Search results for "Biotin binding"

showing 6 items of 16 documents

High-resolution crystal structure of an avidin-related protein: insight into high-affinity biotin binding and protein stability.

2004

The chicken avidin gene belongs to an extended gene family encoding seven avidin-related genes (AVRs), of which only avidin is expressed in the chicken. The sequences of AVR4 and AVR5 are identical and the common protein (AVR4) has been expressed both in insect and bacterial systems. The recombinant proteins are similarly hyperthermostable and bind biotin with similarly high affinities. AVR4 was crystallized in the apo and biotin-complexed forms and their structures were determined at high resolution. Its tertiary and quaternary structures are very similar to those of avidin and streptavidin. Its biotin-binding site shows only a few alterations compared with those of avidin and streptavidin…

StreptavidinBiotin bindingHot TemperatureBiotinBiologylaw.inventionchemistry.chemical_compoundBiotinStructural BiologylawAnimalsProtein Structure QuaternaryThermostabilityBacteriaHydrogen BondingGeneral MedicineAvidinAffinitiesBiochemistrychemistryBiotinylationData Interpretation StatisticalBiophysicsRecombinant DNAbiology.proteinStreptavidinCrystallizationBaculoviridaeChickensAvidinProtein BindingActa crystallographica. Section D, Biological crystallography
researchProduct

Specific interaction of desthiobiotin lipids and water-soluble biotin compounds with streptavidin

1991

As shown for biotin lipids (Ref. 1), the formation of perfect 2-D crystalline streptavidin domains can also be observed in the plane of desthiobiotin lipid monolayers. The binding constant of streptavidin with desthiobiotin (Ka = 5·1013 mol−1) is lower than that with biotin (Ka = 1015 mol−1) (Ref. 2). By adding free biotin into the subphase a competitive replacement and a detaching of the streptavidin domains from the desthiobiotin lipid monolayer takes place. Streptavidin domains built at receptor lipid monolayers are still functional. As could be shown, there are two biotin binding sites at each protein molecule that are fully accessible to biotin (Ref. 1). This can be proven by the inter…

StreptavidinBiotin bindingPolymers and PlasticsOrganic Chemistryfood and beveragesCondensed Matter PhysicsBinding constantchemistry.chemical_compoundBiochemistryBiotinchemistryBiotinylationMonolayerMaterials ChemistryBiophysicsBifunctionalLinkerMakromolekulare Chemie. Macromolecular Symposia
researchProduct

Specific recognition and formation of two- dimensional streptavidin domains in monolayers: applications to molecular devices

1989

Abstract By virtue of the high-affinity specific interaction between the vitamin, biotin, and the protein, streptavidin, monolayers of synthetic lipids with biotin headgroups can tightly bind streptavidin at the lipid-water interface. Through this specific recognition fluorescently-labelled streptavidin spontaneously organizes in the plane of the interface to form large protein domains, directly visible in situ by fluorescence microscopy and exhibiting optical anisotropy. Further structural characterization has shown that these domains are two-dimensional protein crystals. Correlation with the known three-dimensional crystal structure of streptavidin indicates that two of streptavidin's fou…

StreptavidinBiotin bindingProtein domaintechnology industry and agricultureMetals and AlloysSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundCrystallographyBiotinchemistryBiotinylationMonolayerMaterials ChemistryFluorescence microscopeProtein crystallizationThin Solid Films
researchProduct

Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells

2005

The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which fo…

StreptavidinBiotin bindingRecombinant Fusion ProteinsGreen Fluorescent ProteinsBiophysicsBiotinEnzyme-Linked Immunosorbent AssayNanotechnologySpodopteraBiologyBiochemistryChromatography AffinityGreen fluorescent protein03 medical and health scienceschemistry.chemical_compoundBiotinAnimalsMolecular BiologyDNA PrimersPlant Proteins030304 developmental biology0303 health sciencesInsect cellDownstream processingBase Sequence030302 biochemistry & molecular biologyCell BiologyAllergensAntigens PlantFusion proteinFluorescencechemistryBiochemistryBaculoviridaeBiochemical and Biophysical Research Communications
researchProduct

Mutation of a critical tryptophan to lysine in avidin or streptavidin may explain why sea urchin fibropellin adopts an avidin-like domain

1999

Sea urchin fibropellins are epidermal growth factor homologues that harbor a C-terminal domain, similar in sequence to hen egg-white avidin and bacterial streptavidin. The fibropellin sequence was used as a conceptual template for mutation of designated conserved tryptophan residues in the biotin-binding sites of the tetrameric proteins, avidin and streptavidin. Three different mutations of avidin, Trp-110-Lys, Trp-70-Arg and the double mutant, were expressed in a baculovirus-infected insect cell system. A mutant of streptavidin, Trp-120-Lys, was similarly expressed. The homologous tryptophan to lysine (W--K) mutations of avidin and streptavidin were both capable of binding biotin and bioti…

StreptavidinBiotin bindingTime FactorsFunctional dimerLysineMutantBiophysicsBiotinEnzyme-Linked Immunosorbent AssayBiologyBiochemistrychemistry.chemical_compoundBiotinTetramerStructural BiologyGeneticsAnimalsMolecular BiologyExtracellular Matrix ProteinsBinding SitesEpidermal Growth FactorLysineAvidin-biotin technologyTemperatureTryptophanCell BiologyAvidinRecombinant ProteinsKineticsReversiblechemistryBiochemistryBiotinylationSea UrchinsMutationbiology.proteinRecombinant avidin and streptavidinStreptavidinBiotin-bindingAvidinChromatography LiquidProtein BindingFEBS Letters
researchProduct

Crystallization and preliminary X-ray analysis of W120K mutant of streptavidin.

2001

Bacterial streptavidin and chicken avidin are homotetrameric proteins that share an exceptionally high affinity towards the vitamin biotin. The biotin-binding sites in both proteins contain a crucial tryptophan residue contributed from an adjacent subunit. This particular tryptophan (W110 in avidin and W120 in streptavidin) plays an important role in both biotin binding and in the quaternary stabilities of the proteins. An intriguing naturally occurring alteration of tryptophan to lysine was previously described in the C-terminal domain of sea-urchin fibropellins, which share a relatively high sequence similarity with avidin and streptavidin. Avidin (Avm-W110K) and streptavidin (Savm-W120K)…

StreptavidinStrep-tagBiotin bindingbiologyProtein ConformationLysineTryptophanTryptophanGeneral MedicineCrystallography X-Raychemistry.chemical_compoundCrystallographyProtein structureBiotinchemistryAmino Acid SubstitutionBacterial ProteinsStructural BiologyBiotinylationMutationbiology.proteinStreptavidinCrystallizationBaculoviridaeAvidinActa crystallographica. Section D, Biological crystallography
researchProduct