Search results for "Block design"
showing 8 items of 18 documents
Four-Year Study on the Bio-Agronomic Response of Biotypes of Capparis spinosa L. on the Island of Linosa (Italy)
2021
The caper plant is widespread in Sicily (Italy) both wild in natural habitats and as specialized crops, showing considerable morphological variation. However, although contributing to a thriving market, innovation in caper cropping is low. The aim of the study was to evaluate agronomic and production behavior of some biotypes of Capparis spinosa L. subsp. rupestris, identified on the Island of Linosa (Italy) for growing purposes. Two years and seven biotypes of the species were tested in a randomized complete block design. The main morphological and production parameters were determined. Phenological stages were also observed. Analysis of variance showed high variability between the biotype…
Binary Hamming codes and Boolean designs
2021
AbstractIn this paper we consider a finite-dimensional vector space $${\mathcal {P}}$$ P over the Galois field $${\text {GF}}(2),$$ GF ( 2 ) , and the family $${\mathcal {B}}_k$$ B k (respectively, $${\mathcal {B}}_k^*$$ B k ∗ ) of all the k-sets of elements of $$\mathcal {P}$$ P (respectively, of $${\mathcal {P}}^*= {\mathcal {P}} \setminus \{0\}$$ P ∗ = P \ { 0 } ) summing up to zero. We compute the parameters of the 3-design $$({\mathcal {P}},{\mathcal {B}}_k)$$ ( P , B k ) for any (necessarily even) k, and of the 2-design $$({\mathcal {P}}^{*},{\mathcal {B}}_k^{*})$$ ( P ∗ , B k ∗ ) for any k. Also, we find a new proof for the weight distribution of the binary Hamming code. Moreover, we…
On the representations in GF(3)^4 of the Hadamard design H_11
2020
In this paper we study the representations of the 2-(11,5,2) Hadamard design H_11 = (P,B) as a set of eleven points in the 4-dimensional vector space GF(3)^4, under the conditions that the five points in each block sum up to zero, and dim ‹P› = 4. We show that, up to linear automorphism, there exist precisely two distinct, linearly nonisomorphic representations, and, in either case, we characterize the family S of all the 5-subsets of P whose elements sum up to zero. In both cases, S properly contains the family of blocks B, thereby showing that a previous result on the representations of H_11 in GF(3)^5 cannot be improved.
Some additive 2-(v,4,lambda) designs.
2009
Additivity of affine designs
2020
We show that any affine block design $$\mathcal{D}=(\mathcal{P},\mathcal{B})$$ is a subset of a suitable commutative group $${\mathfrak {G}}_\mathcal{D},$$ with the property that a k-subset of $$\mathcal{P}$$ is a block of $$\mathcal{D}$$ if and only if its k elements sum up to zero. As a consequence, the group of automorphisms of any affine design $$\mathcal{D}$$ is the group of automorphisms of $${\mathfrak {G}}_\mathcal{D}$$ that leave $$\mathcal P$$ invariant. Whenever k is a prime p, $${\mathfrak {G}}_\mathcal{D}$$ is an elementary abelian p-group.
Bayesian analysis and design for comparison of effect-sizes
2002
Comparison of effect-sizes, or more generally, of non-centrality parameters of non-central t distributions, is a common problem, especially in meta-analysis. The usual simplifying assumptions of either identical or non-related effect-sizes are often too restrictive to be appropriate. In this paper, the effect-sizes are modeled as random effects with t distributions. Bayesian hierarchical models are used both to design and analyze experiments. The main goal is to compare effect-sizes. Sample sizes are chosen so as to make accurate inferences about the difference of effect-sizes and also to convincingly solve the testing of equality of effect-sizes if such is the goal.
On extremal intersection numbers of a block design
1982
K.N. Majumdar has shown that for a 2-(v, k, @l) design D there are three numbers @a, @t, and @S such that each intersection number of D is not greater than @S and not less than max{@a, @t}. In this paper we investigate designs having one of these 'extremal' intersection numbers. Quasisymmetric designs with at least one extremal intersection number are characterized. Furthermore, we show that a smooth design D having the intersection number @S or @a>0 is isomorphic to the system of points and hyperplanes of a finite projective space. Using this theorem, we can characterize all smooth strongly resolvable designs.
Bollettino di Matematica pura e applicata
2020
The paper emphasizes some the advances of knowledge in mathematics problems ad new applications. The Bollettino is open to the contribution of Italian or foreign researchers.