Search results for "Blow-up"

showing 9 items of 9 documents

A blow-up result for a nonlinear wave equation on manifolds: the critical case

2021

We consider a inhomogeneous semilinear wave equation on a noncompact complete Riemannian manifold (Formula presented.) of dimension (Formula presented.), without boundary. The reaction exhibits the combined effects of a critical term and of a forcing term. Using a rescaled test function argument together with appropriate estimates, we show that the equation admits no global solution. Moreover, in the special case when (Formula presented.), our result improves the existing literature. Namely, our main result is valid without assuming that the initial values are compactly supported.

manifoldApplied MathematicsBlow-upMathematical analysisBoundary (topology)Riemannian manifoldWave equationManifoldcritical caseDimension (vector space)Settore MAT/05 - Analisi MatematicaNonlinear wave equationMathematics::Differential Geometryinhomogeneous semilinear wave equationAnalysisMathematicsApplicable Analysis
researchProduct

Numerical study of blow-up and stability of line solitons for the Novikov-Veselov equation

2017

International audience; We study numerically the evolution of perturbed Korteweg-de Vries solitons and of well localized initial data by the Novikov-Veselov (NV) equation at different levels of the 'energy' parameter E. We show that as |E| -> infinity, NV behaves, as expected, similarly to its formal limit, the Kadomtsev-Petviashvili equation. However at intermediate regimes, i.e. when |E| is not very large, more varied scenarios are possible, in particular, blow-ups are observed. The mechanism of the blow-up is studied.

Soliton stability[ MATH ] Mathematics [math]media_common.quotation_subjectBlow-upInverse scatteringMathematics::Analysis of PDEsNonzero energyFOS: Physical sciencesGeneral Physics and Astronomy2-dimensional schrodinger operator01 natural sciencesStability (probability)Instability010305 fluids & plasmasMathematics - Analysis of PDEs[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: MathematicsLimit (mathematics)0101 mathematics[MATH]Mathematics [math]Nonlinear Sciences::Pattern Formation and SolitonsMathematical PhysicsLine (formation)Mathematicsmedia_commonMathematical physicsNovikov–Veselov equationNonlinear Sciences - Exactly Solvable and Integrable SystemsKadomtsev-petviashvili equationsApplied Mathematics010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]InstabilityStatistical and Nonlinear PhysicsMathematical Physics (math-ph)InfinityNonlinear Sciences::Exactly Solvable and Integrable SystemsWell-posednessNovikov Veselov equationInverse scattering problemExactly Solvable and Integrable Systems (nlin.SI)Energy (signal processing)Analysis of PDEs (math.AP)
researchProduct

Stress concentration for closely located inclusions in nonlinear perfect conductivity problems

2019

We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p \leq N$. We prove optimal $L^\infty$ estimates for the blow-up of the gradient of the solution as the distance between the inclusions tends to zero.

Applied Mathematics010102 general mathematicsMathematical analysisDegenerate energy levelsZero (complex analysis)Perfect conductorAnalysiGradient blow-upType (model theory)Conductivity01 natural sciences010101 applied mathematicsNonlinear systemMathematics - Analysis of PDEsFOS: MathematicsFinsler p-Laplacian0101 mathematicsPerfect conductorAnisotropy35J25 35B44 35B50 (Primary) 35J62 78A48 58J60 (Secondary)AnalysisAnalysis of PDEs (math.AP)MathematicsStress concentration
researchProduct

On critical behaviour in generalized Kadomtsev-Petviashvili equations

2016

International audience; An asymptotic description of the formation of dispersive shock waves in solutions to the generalized Kadomtsev–Petviashvili (KP) equation is conjectured. The asymptotic description based on a multiscales expansion is given in terms of a special solution to an ordinary differential equation of the Painlevé I hierarchy. Several examples are discussed numerically to provide strong evidence for the validity of the conjecture. The numerical study of the long time behaviour of these examples indicates persistence of dispersive shock waves in solutions to the (subcritical) KP equations, while in the supercritical KP equations a blow-up occurs after the formation of the disp…

Differential equationsShock waveSpecial solutionBlow-upKadomtsev–Petviashvili equations[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Mathematics::Analysis of PDEsFOS: Physical sciencesPainlevé equationsKadomtsev-Petviashvili equationsKadomtsev–Petviashvili equation01 natural sciences010305 fluids & plasmasShock wavesDispersive partial differential equationMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsCritical behaviourLong-time behaviourSupercriticalDispersion (waves)0101 mathematicsKP equationSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsMathematical physicsKadomtsev-Petviashvili equationPainleve equationsConjectureNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisDispersive shocks Kadomtsev–Petviashvili equations Painlevé equations Differential equations Dispersion (waves) Ordinary differential equations Shock waves Blow-up Critical behaviour Dispersive shocks Kadomtsev-Petviashvili equation KP equation Long-time behaviour Special solutions Supercritical Partial differential equationsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Condensed Matter PhysicsDispersive shocksPartial differential equationsNonlinear Sciences::Exactly Solvable and Integrable SystemsOrdinary differential equationSpecial solutions[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Exactly Solvable and Integrable Systems (nlin.SI)Ordinary differential equationsAnalysis of PDEs (math.AP)
researchProduct

Cyclicity of common slow–fast cycles

2011

Abstract We study the limit cycles of planar slow–fast vector fields, appearing near a given slow–fast cycle, formed by an arbitrary sequence of slow parts and fast parts, and where the slow parts can meet the fast parts in a nilpotent contact point of arbitrary order. Using the notion slow divergence integral, we delimit a large subclass of these slow–fast cycles out of which at most one limit cycle can perturb, and a smaller subclass out of which exactly one limit cycle will perturb. Though the focus lies on common slow–fast cycles, i.e. cycles with only attracting or only repelling slow parts, we present results that are valid for more general slow–fast cycles. We also provide examples o…

Slow–fast cycleSequenceMathematics(all)General MathematicsBlow-upMathematical analysisSlow-fast cycleSingular perturbationsContact pointDivergence (computer science)CanardBlow-upLimit cycleRelaxation oscillationCyclicityVector fieldCanardLimit (mathematics)MathematicsIndagationes Mathematicae
researchProduct

High precision numerical approach for Davey–Stewartson II type equations for Schwartz class initial data

2020

We present an efficient high-precision numerical approach for Davey–Stewartson (DS) II type equa- tions, treating initial data from the Schwartz class of smooth, rapidly decreasing functions. As with previous approaches, the presented code uses discrete Fourier transforms for the spatial dependence and Driscoll’s composite Runge–Kutta method for the time dependence. Since DS equations are non-local, nonlinear Schrödinger equations with a singular symbol for the non-locality, standard Fourier methods in practice only reach accuracy of the order of 10−6or less for typical examples. This was previously demonstrated for the defocusing integrable case by comparison with a numerical approach for …

semiclassical limitClass (set theory)General MathematicsGeneral Physics and AstronomywaveType (model theory)01 natural sciences010305 fluids & plasmasDavey-Stewartson equationsevolution0103 physical sciencesApplied mathematics[MATH]Mathematics [math]0101 mathematicsMathematicsInverse scattering transform010102 general mathematicsGeneral EngineeringD-bar problemsFourier spectral methodsimulationkadomtsev-petviashviliinverse scattering transformpacketssystemsSolitonsolitonblow-upProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
researchProduct

Numerical study of the transverse stability of the Peregrine solution

2020

We generalise a previously published approach based on a multi-domain spectral method on the whole real line in two ways: firstly, a fully explicit 4th order method for the time integration, based on a splitting scheme and an implicit Runge--Kutta method for the linear part, is presented. Secondly, the 1D code is combined with a Fourier spectral method in the transverse variable both for elliptic and hyperbolic NLS equations. As an example we study the transverse stability of the Peregrine solution, an exact solution to the one dimensional nonlinear Schr\"odinger (NLS) equation and thus a $y$-independent solution to the 2D NLS. It is shown that the Peregrine solution is unstable against all…

Mathematics::Analysis of PDEsFOS: Physical sciences010103 numerical & computational mathematics01 natural sciencesStability (probability)spectral approachdispersive blow-upperfectly matched layersymbols.namesakeMathematics - Analysis of PDEsnonlinear Schrodinger equations0103 physical sciencesFOS: MathematicsMathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]010306 general physicsNonlinear Sciences::Pattern Formation and SolitonsReal lineVariable (mathematics)Physicsschrodinger-equationsNonlinear Sciences - Exactly Solvable and Integrable SystemsApplied MathematicsMathematical analysisNumerical Analysis (math.NA)Nonlinear systemTransverse planeExact solutions in general relativityFourier transformPeregrine solutionsymbolsExactly Solvable and Integrable Systems (nlin.SI)Spectral methodAnalysis of PDEs (math.AP)
researchProduct

Gradient estimates for the perfect conductivity problem in anisotropic media

2018

Abstract We study the perfect conductivity problem when two perfectly conducting inclusions are closely located to each other in an anisotropic background medium. We establish optimal upper and lower gradient bounds for the solution in any dimension which characterize the singular behavior of the electric field as the distance between the inclusions goes to zero.

Finsler LaplacianApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)Perfect conductorGradient blow-upConductivity01 natural sciences010101 applied mathematicsMathematics - Analysis of PDEsDimension (vector space)Settore MAT/05 - Analisi MatematicaElectric fieldSingular behaviorFOS: MathematicsMathematics (all)Primary: 35J25 35B44 35B50 Secondary: 35J62 78A48 58J600101 mathematicsPerfect conductorAnisotropyAnalysis of PDEs (math.AP)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

On the critical curve for systems of hyperbolic inequalities in an exterior domain of the half-space

2023

We establish blow-up results for a system of semilinear hyperbolic inequalities in an exterior domain of the half-space. The considered system is investigated under an inhomogeneous Dirichlet-type boundary condition depending on both time and space variables. In certain cases, an optimal criterium of Fujita-type is derived. Our results yield naturally sharp nonexistence criteria for the corresponding stationary wave system and equation.

Settore MAT/05 - Analisi MatematicaApplied MathematicsBlow-upHyperbolic inequalitiesWave equations and inequalitiesHalf-spaceAnalysisExterior domain
researchProduct