Search results for "Body Patterning"

showing 4 items of 44 documents

NineTeen Complex-subunit Salsa is required for efficient splicing of a subset of introns and dorsal-ventral patterning

2020

© 2020 Rathore et al. This article is distributed exclusively by the RNASociety for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

SpliceosomeBiochemistry & Molecular BiologyRNA SplicingBiologySplicingGermlineArticleMidblastulaDorsal-ventral patterning03 medical and health sciencesAnimalsDrosophila ProteinsFemale fertilityGurkenMolecular BiologyGene030304 developmental biologyBody Patterning0303 health sciencesMessenger RNA030302 biochemistry & molecular biologyfungiIntronGene Expression Regulation DevelopmentalTransforming Growth Factor alphaRNA Helicase AIntronsCell biologyDorsal-ventral patterning; Drosophila; Female fertility; Gurken; Splicing; dorsal–ventral patterning; female fertility; splicingDNA-Binding ProteinsDrosophila melanogasterRNA splicingSpliceosomesFemaleDrosophilaInfertility Female
researchProduct

Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain

2008

AbstractIFT172, also known as Selective Lim-domain Binding protein (SLB), is a component of the intraflagellar transport (IFT) complex. In order to evaluate the biological role of the Ift172 gene, we generated a loss-of-function mutation in the mouse. The resulting Slb mutant embryos die between E12.5 and 13.0, and exhibit severe cranio-facial malformations, failure to close the cranial neural tube, holoprosencephaly, heart edema and extensive hemorrhages. Cilia outgrowth in cells of the neuroepithelium is initiated but the axonemes are severely truncated and do not contain visible microtubules. Morphological and molecular analyses revealed a global brain-patterning defect along the dorsal–…

animal structuresBody PatterningNodal ProteinSlbNodalBiologyArticleMiceFGF8Intraflagellar transportHoloprosencephalymedicineMHB boundaryAnimalsHedgehog ProteinsRNA MessengerCiliaNodeMolecular BiologyAdaptor Proteins Signal TransducingBody PatterningGeneticsMammalsCell DeathCiliumEndodermNeural tubeIntracellular Signaling Peptides and ProteinsBrainGene Expression Regulation DevelopmentalCell BiologyEmbryo MammalianCell biologyNeuroepithelial cellGastrulationCytoskeletal Proteinsmedicine.anatomical_structurePhenotypeIFT172Gene Targetingembryonic structuresNODALBiomarkersGene DeletionDevelopmental BiologySignal TransductionDevelopmental Biology
researchProduct

Spatially restricted expression of PlOtp, a Paracentrotus lividus Orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and…

1999

ABSTRACT Several homeobox genes are expressed in the sea urchin embryo but their roles in development have yet to be elucidated. Of particular interest are homologues of homeobox genes that in mouse and Drosophila are involved in patterning the developing central nervous system (CNS). Here, we report the cloning of an orthopedia (Otp)-related gene from Paracentrotus lividus, PlOtp. Otp is a single copy zygotic gene that presents a unique and highly restricted expression pattern. Transcripts were first detected at the mid-gastrula stage in two pairs of oral ectoderm cells located in a ventrolateral position, overlying primary mesenchyme cell (PMC) clusters. Increases in both transcript abund…

animal structuresDNA ComplementaryStomodeumBody PatterningPolarity in embryogenesisCell specificationCleavage Stage OvumMolecular Sequence DataGene DosageGene ExpressionSettore BIO/11 - Biologia MolecolareEctodermNerve Tissue ProteinsParacentrotus lividusGene expressionEctodermmedicineAnimalsDrosophila ProteinsAmino Acid SequenceCloning MolecularMolecular BiologyBody PatterningGeneticsHomeodomain ProteinsbiologyBase SequenceGenes HomeoboxOrthopediaSequence Analysis DNAbiology.organism_classificationCell biologymedicine.anatomical_structureEctopic expressionParacentrotus lividusSea UrchinsSpiculogenesisSettore BIO/03 - Botanica Ambientale E Applicataembryonic structuresHomeoboxEctopic expressionDevelopmental Biology
researchProduct

Dpp signaling inhibits proliferation in the Drosophila wing by Omb-dependent regional control of bantam

2013

The control of organ growth is a fundamental aspect of animal development but remains poorly understood. The morphogen Dpp has long been considered as a general promoter of cell proliferation during Drosophila wing development. It is an ongoing debate whether the Dpp gradient is required for the uniform cell proliferation observed in the wing imaginal disc. Here, we investigated how the Dpp signaling pathway regulates proliferation during wing development. By systematic manipulation of Dpp signaling we observed that it controls proliferation in a region-specific manner: Dpp, via omb, promoted proliferation in the lateral and repressed proliferation in the medial wing disc. Omb controlled th…

medicine.medical_specialtyanimal structuresMicroRNA GeneNerve Tissue ProteinsBiologyTranscription (biology)Internal medicinemedicineAnimalsDrosophila ProteinsWings AnimalMolecular BiologyDpp signaling pathwayBody PatterningCell ProliferationWingCell growthAnimal developmentCell biologyMicroRNAsImaginal discEndocrinologyDrosophilaT-Box Domain ProteinsSignal TransductionDevelopmental BiologyMorphogenDevelopment
researchProduct