Search results for "Bond"
showing 10 items of 3527 documents
Cooperative H-bonds, π⋯π and anion⋯π interactions as driving forces in the construction of novel Cu(II) bis(imidazol-2-yl) supramolecular 3D framewor…
2019
Abstract Two new Cu(II) complexes with bis(2-imidazolyl) based ligands, with the formula [Cu(BIM)2(SCN)2]·2H2O (BIM = bis(2-imidazol-2-yl)methane) and [Cu(HBIMAM)2(OH2)2](BF4)4·2H2O (BIMAM = bis(2-imidazol-2-yl)methylaminomethane) have been synthesized and characterized. Both compounds contain mononuclear entities as molecular building blocks (MBBs); neutral [Cu(BIM)2(SCN)2] in compound 1 and cationic [Cu(HBIMAM)2(OH2)2]4+ in compound 2. The coordination around the metal atoms shows a tetragonally-elongated octahedral geometry (CuN4S2 and CuN4O2 chromophores). The Q-band EPR spectra of both compounds are indicative of an essentially d x 2 - y 2 ground state for copper(II) ions. The analysis…
A water molecule in the interior of a 1H-pyrazole Cu2+ metallocage
2016
Water has a great tendency to associate through hydrogen bonding with water molecules or other hydrogen bond donor or acceptor groups. Here the case of a water molecule encapsulated in the interior of a metallocage receptor is presented. The association of four copper(II) ions and two aza-macrocyclic receptors in which two 1H-pyrazole units are connected by cadaverine diamines leads to the inclusion of a water molecule into the cage, as proved by X-ray analysis and infrared spectroscopy. The included water molecule shows no hydrogen bonding with any component of the cage presenting only a weak hydrogen bond with an oxygen atom of a perchlorate counter-anion. The IR stretching vibrations pre…
Synthesis, Structural and Spectroscopic Characterization of Cr III , Fe III , Co III , Ni II and Cu II Complexes with an Asymmetric 1,3,4‐Thiadiazole…
2016
The reaction of the new asymmetric 1,3,4-thiadiazole-based ligand 2-[(5-ethylthio-1,3,4-thiadiazol-2-yl)hydrazonomethyl]phenol (H1ETHP) with various third-row transition metal salts resulted in the formation of six new mononuclear complexes [Cr(ETHP)2]ClO4 (1), [Fe(ETHP)2][FeCl4] (2), [Co(ETHP)(ETHP–H)] (3), [Ni(ETHP)(H1ETHP)]Cl (4), [Ni(ETHP)(H1ETHP)](ClO4) (5), [Ni(ETHP)(H1ETHP)]Br (6), and one tetranuclear complex [Cu2Cl3(ETHP)(H1ETHP)]2 (7). H1ETHP and all complexes have been analyzed by single crystal X-ray diffraction. Structural analysis of 1–6 reveals complexes of the [ML2]n+-type (n = 0,1), in which the mono anionic ligand ETHP coordinates in a tridentate NNO fashion via its imine,…
Energetic study of bifurcated hydrogen bonds in secondary structures of salts composed with dicarboxylic acids and ethylamine
2020
Abstract The nature of bifurcated hydrogen bonds prompted us to analyze the energy of supramolecular motifs on the example of new structures of carboxylic acids salts with amines, which guarantee a multitude of such interactions. Experimental and theoretical studies of four dicarboxylic salts with primary amine: ethylammonium succinate hydrate (1), tartrate hydrate (2) phthalate hydrate (3) and terephthalate (4) has been investigated along with study of the strength of interactions between the anions and cations. The complete topological analysis of the charge density for all new structures allowed designation of the estimated Cumulative Dissociation Energy (eCDE).
Dicopper(II) pyrazolenophanes: Ligand effects on their structures and magnetic properties
2016
Abstract The use of simple pyrazolate anions and related polychelating acyclic or macrocyclic pyrazolate derivatives as bridging ligands, and occasionally additional blocking ligands, has led to the stereospecific Cu II -mediated self-assembly of both homo- and heteroleptic di-μ-pyrazolatodicopper(II) complexes of the metallacyclophane type, so-called dicopper(II) pyrazolenophanes. Besides their unique molecular conformation features and binding abilities toward both neutral molecules and charged anionic species, which have illustrated the putative role of weak intramolecular π–π stacking, hydrogen bonding, and coordinative interactions in the self-assembling process, dicopper(II) pyrazolen…
(2S,3S)-2-Azaniumyl-4-[(1S,4aS,4bS,6S,7S,8aS,10aS)-6,7-dihydroxy-2,4b,8,8,10a-pentamethyl-1,4,4a,4b,5,6,7,8,8a,9,10,10a-dodecahydrophenanthren-1-yl]-…
2018
The title compound, which crystallized as a methanol and water solvate, C24H41NO5·CH4O·H2O, was obtained by heterologous expression of the brasilicardin gene cluster in the bacterium Amycolatopsis japonicum. In the crystal, the components are linked by numerous hydrogen bonds, generating a three-dimensional network.
Solution Conformation and Self‐Assembly of Ferrocenyl(thio)ureas
2016
Conformations and (dis)assembly processes of ureas and thioureas are of fundamental importance in supramolecular chemistry, anion binding, or crystal engineering, both in solution and in the solid state. For sensing and switching processes a redox-active unit, such as the ferrocene/ferrocenium couple, is especially suitable. Here, self-assembly processes of redox-active ferrocenyl(thio)ureas FcNHC(X)NHR [X = O, R = Fc (1), Ph (2), 1-naphthyl (3), Me (4), Et (5); X = S, R = Fc (6), 1-anthracenyl (7)] through hydrogen bonds – both in the solid state and in THF and CH2Cl2 solution – are reported. Special emphasis is placed on the impact of nonclassical intramolecular NH···Fe hydrogen bonds in …
2017
The title compound, C12H9BrN2O3, was prepared in two steps from 2-chloro-3-nitropyridine. The nitrobiaryl unit is twisted, with dihedral angles of 35.4 (5)° between the nitro substituent and the pyridine ring to which it is bound, and 51.0 (5)° between the nitro group and the benzene ring. In the crystal, the molecules are connectedviaC—H...O hydrogen bonds, forming strands along theb-axis direction.
Reversible O–H bond activation by an intramolecular frustrated Lewis pair
2019
The interactions of the O-H bonds in alcohols, water and phenol with dimethylxanthene-derived frustrated Lewis pairs (FLPs) have been probed. Within the constraints of this backbone framework, the preference for adduct formation or O-H bond cleavage to give the corresponding zwitterion is largely determined by pKa considerations. In the case of the PPh2/B(C6F5)2 system and p-tBuC6H4OH, an equilibrium is established between the two isomeric forms which allows the thermodynamic parameters associated with zwitterion formation via O-H bond cleavage to be probed.
Ion-Pair Complexation with Dibenzo[21]Crown-7 and Dibenzo[24]Crown-8 bis-Urea Receptors
2016
Synthesis and ion-pair complexation properties of novel ditopic bis-urea receptors based on dibenzo[21]crown-7 (R(1) ) and dibenzo[24]crown-8 (R(2) ) scaffolds have been studied in the solid state, solution, and gas phase. In a 4:1 CDCl3 /[D6 ]DMSO solution, both receptors clearly show positive heterotropic cooperativity toward halide anions when complexed with Rb(+) or Cs(+) , with the halide affinity increasing in order I(-) <Br(-) <Cl(-) . In solution, the rubidium complexes of both receptors have higher halide affinities compared to the caesium complexes. However, Rb(+) and Cs(+) complexes of R(2) show stronger affinities toward all the studied anions compared to the corresponding catio…