Search results for "Bond"
showing 10 items of 3527 documents
Unveiling the high reactivity of cyclohexynes in [3 + 2] cycloaddition reactions through the molecular electron density theory
2018
[3 + 2] cycloaddition (32CA) reactions of cyclohexyne, a cyclic strained acetylene, with methyl azide and methoxycarbonyl diazomethane have been studied within the Molecular Electron Density Theory (MEDT) at the MPWB1K/6-311G(d) computational level. These 32CA reactions, which take place through a one-step mechanism involving highly asynchronous transition state structures, proceed with relatively low activation enthalpies of 6.0 and 4.3 kcal mol-1, respectively, both reactions being strongly exothermic. The reactions are initiated by the creation of a pseudoradical center at one of the two acetylenic carbons of cyclohexyne with a very low energy cost, 1.0 kcal mol-1, which promotes the eas…
Reversible Covalent and Supramolecular Functionalization of Water-Soluble Gold(I) Complexes.
2017
The ligation of gold(I) metalloamphiphiles with biomolecules is reported, using water-soluble AuI -N-alkynyl substituted maleimide complexes. For this purpose, two different polar ligands were applied: 1) a neutral, dendritic tetraethylene glycol-functionalized phosphane and 2) a charged, sulfonated N-heterocyclic carbene (NHC). The retro Diels-Alder reaction of a furan-protected maleimide gold(I) complex, followed by cycloaddition with a diene-functionalized biotin under mild conditions leads to a novel gold(I) metalloamphiphile. The strong streptavidin-biotin binding affinity in buffered aqueous solution of the resulting biotin alkynyl gold(I) phosphane conjugate remains intact. The cytot…
Kinetic and Electrochemical Studies of the Oxidative Addition of Demanding Organic Halides to Pd(0): the Efficiency of Polyphosphane Ligands in Low P…
2013
International audience; Oxidative addition (OA) of organic halides to palladium(0) species is a fundamental reaction step which initiates the C–C bond formation catalytic processes typical of Pd(0)/Pd(II) chemistry. The use of structurally congested polyphosphane ligands in palladium-catalyzed C–C bond formation has generated very high turnover numbers (TONs) in topical reactions such as Heck, Suzuki, Sonogashira couplings, and direct sp2C–H functionalization. Herein, the OA of aryl bromides to Pd(0) complexes stabilized by ferrocenylpolyphosphane ligands L1 (tetraphosphane), L2 (triphosphane), and L3 (diphosphane) is considered. The investigation of kinetic constants for the addition of Ph…
Magneto-structural correlations in a family of ReIVCuII chains based on the hexachlororhenate(IV) metalloligand
2017
Six novel one-dimensional chloro-bridged ReIVCuII complexes of formula {[Cu(L)4][ReCl6]}n, where L = imidazole (Imi, 1), 1-methylimidazole (Meim, 2), 1-vinylimidazole (Vim, 3), 1-butylimidazole (Buim, 4), 1-vinyl-1,2,4-triazole (Vtri, 5) and N,N’-dimethylformamide (DMF, 6) are characterised structurally, magnetically and theoretically. The structures exhibit significant differences in Cu–Cl bond lengths and Re–Cl–Cu bridging angles, resulting in large differences in the nature and magnitude of magnetic exchange interactions between the ReIV and CuII ions. Theoretical calculations reveal the coupling to be primarily ferromagnetic, increasing in magnitude as the bridging angle becomes smaller…
Further synthetic and structural investigations of new pre-organized picket porphyrins
2005
The straightforward synthesis of three new picket porphyrins with a restrained conformation is described. These porphyrins have an unusual behavior due to the conjugated but still flexible nature of their pickets. The crystal structure of their common precusor is also reported and confirms the presumed geometry of this type of picket. Indeed, the latter one is formally obtained by the conjugation of two aromatic rings through an amide bond. Although the specific shape of the picket is expected to overcrowd the center of the porphyrin, it is shown that different types of nucleophilic reagents can add easily on these pickets.
Influence of the solvent and R groups on the structure of (carboranyl)R2PI2 compounds in solution. Crystal structure of the first iodophosphonium sal…
2008
The influence of the electron-donor or electron-acceptor capacity of the R groups (R = (i)Pr, Ph, Et) and the solvent on the molecular geometry in solution of adducts of carboranylphosphanes [(carboranyl)(i)Pr2P, (carboranyl)Ph2P and (carboranyl)Et2P] with I2 in 1 : 1 ratios, has been studied in detail by 31P{1H} and 11B{1H} NMR spectroscopies. The more electron-accepting Ph groups make the (carboranyl)Ph2P less nucleophilic, thus stabilizing the I2 encapsulated neutral biscarboranylphosphane-diiodine adducts in solution, such as (carboranyl)Ph2PI-IPPh2(carboranyl), generating P---I-I---P motifs. Even in a polar solvent, such as EtOH, the arrangement is preserved. The expected basicity of t…
Determining Factors for the Unfolding Pathway of Peptides, Peptoids, and Peptidic Foldamers.
2016
We present a study of the mechanical unfolding pathway of five different oligomers (α-peptide, β-peptide, δ-aromatic-peptides, α/γ-peptides, and β-peptoids), adopting stable helix conformations. Using force-probe molecular dynamics, we identify the determining structural factors for the unfolding pathways and reveal the interplay between the hydrogen bond strength and the backbone rigidity in the stabilization of their helix conformations. On the basis of their behavior, we classify the oligomers in four groups and deduce a set of rules for the prediction of the unfolding pathways of small foldamers.
Synthesis, crystal structure and magnetic properties of two oxalato-bridged dimetallic trinuclear complexes combined with a polar cation
2010
Two isostructural heterometallic trinuclear oxalato-bridged complexes of formula C(4)[MCr(2)(ox)(6)(H(2)O)(2)]·nH(2)O (C(+) = 4-aminopyridinium; ox(2-) = oxalate dianion; M(2+) = Mn(2+), n = 3, 1; M(2+) = Co(2+), n = 3.25, 2) have been synthesized by using direct self-assembly methods combining C(3)[Cr(ox)(3)] and the chloride salts of the corresponding metal ion. The crystal structures of both compounds have been resolved by single-crystal X-ray diffraction. They crystallize in the C2/c space group [a = 11.5113(15) Å, b = 20.250(3) Å, c = 21.810(4) Å, beta = 100.447(10) degrees, V = 5161.6(3) Å(3), and Z = 4 for 1, and a = 11.4334(16) Å, b = 20.243(2) Å, c = 21.805(3) Å, beta = 101.113(9) …
2016
The title compound, C32H48O8P2S2, was prepared by the nickel-catalyzed reaction of bis(5-bromothienyl)dipropoxybenzene and triisopropyl phosphite. The thiophene rings are inclined to the benzene ring by 14.6 (2) and 25.3 (3)°. One propyloxy group is disordered. Four hydrogen bonds connect the molecules, which are arranged in ribbons parallel to thebcplane.
Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation
2020
Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K2 [(NON)Al(NDipp)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene; Dipp=2,6-diisopropylphenyl) structural characterization by X-ray crystallography reveals a short Al-N distance, which is thought primarily to be due to the low coordinate nature of the nitrogen centre. The Al-N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of the substrate…