Search results for "Bone morphogenetic protein"

showing 8 items of 68 documents

Zebrafish Fins as a Model System for Skeletal Human Studies

2007

Recent studies on the morphogenesis of the fins ofDanio rerio(zebrafish) during development and regeneration suggest that a number of inductive signals involved in the process are similar to some of those that affect bone and cartilage differentiation in mammals and humans. Akimenko et al. (2002) has shown that bone morphogenetic protein-2b (BMP2b) is involved in the induction of dermal bone differentiation during fin regeneration. Many other groups have also shown that molecules from the transforming growth factor-beta superfamily (TGFβ), including BMP2, are effective in promoting chondrogenesis and osteogenesisin vivoin higher vertebrates, including humans. In the present study, we review…

collagenPathologylcsh:MedicineReview Articlebonelcsh:TechnologydentineExtracellular matrixbone regenerationOsteogenesisMorphogenesislcsh:ScienceZebrafishZebrafishGeneral Environmental Sciencetransforming growth factor betaDermal bonebiologyenamelGeneral MedicineCell biologyendochondral ossificationmedicine.anatomical_structureModels Animalmedicine.medical_specialtyextracellular matrixosteocyteregenerative medicineray dermal boneBone morphogenetic protein 2Bone and BonesGeneral Biochemistry Genetics and Molecular BiologyFin regenerationsonic hedgehogbone morphogenetic proteinsmedicineAnimalsHumansactinopterygian fishesmammalslepidotrichiascleroblastmesenchymal stem cellslcsh:TRegeneration (biology)Cartilagelcsh:RZebrafish Proteinsbone repairbiology.organism_classificationChondrogenesisCartilageregenerationintramembranous ossificationlcsh:Qcell therapyvertebratesThe Scientific World Journal
researchProduct

Protein Adsorption Hysteresis and Transient States of Fibrinogen and BMP-2 as Model Mechanisms for Proteome-Binding to Implants

2020

Abstract Protein adsorption studies returned to the focus of medical therapeutics, when it was found that up to 2500 non-plasma proteins adsorbed to hip implants during arthroplastic surgery, challenging peri-implant healing models. Questions have re-emerged as to the implications of uncontrolled protein unfolding after adsorption. In past studies on the cooperativity of protein binding we discovered protein adsorption hysteresis, a thermodynamically irreversible process. The present precursory study comprises real-time kinetic (TIRF-Rheometry) and equilibrium (125I-tracer ) studies on the hysteretic binding of fibrinogen and rhBMP-2 to titanium and glass surfaces via transient states. Ther…

hill constantsChemistrybinding constantsoff-rate (k-1)RMedizinBiomedical Engineeringadsorption and desorption isothermsFibrinogenBone morphogenetic protein 2Hysteresison-rate (k+1)total internal reflection fluorescence (tirf)ProteomeBiophysicsmedicineMedicineTransient (oscillation)tirf-rheometrymedicine.drugProtein adsorptionCurrent Directions in Biomedical Engineering
researchProduct

BMP-2 and bFGF release and in vitro effect on human osteoblasts after adsorption to bone grafts and biomaterials.

2012

Objectives Combination of scaffolds and growth factors is a promising option for several clinical problems in bone biomaterials. Simplified growth factor loading by adsorption from aqueous solution is one important option for this technology. We evaluated the adsorption followed by PBS rinsing, release and biological effect of transient loading with basic fibroblast growth factor (bFGF) and bone morphogenic protein 2 (BMP-2) on fresh frozen bone, processed bone matrix, collagen, and a ceramic material with immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and qRT-PCR. Materials and methods The study consisted of three in vitro experiments (immunofluorescence, ELISA, and qRT-PCR…

medicine.medical_specialtyCeramicsTime Factorsmedicine.medical_treatmentBasic fibroblast growth factorOsteocalcinCell Culture TechniquesBone MatrixBone Morphogenetic Protein 2Fluorescent Antibody TechniqueBiocompatible MaterialsCore Binding Factor Alpha 1 SubunitEnzyme-Linked Immunosorbent AssayBone healingMatrix (biology)Bone morphogenetic proteinBone morphogenetic protein 2Bone and Boneschemistry.chemical_compoundmedicineAnimalsHumansCells CulturedOsteoblastsbiologyTissue ScaffoldsReverse Transcriptase Polymerase Chain ReactionGrowth factorOsteoblastAlkaline PhosphataseSurgerymedicine.anatomical_structureDurapatitechemistryDelayed-Action PreparationsOsteocalcinbiology.proteinBiophysicsNanoparticlesFibroblast Growth Factor 2AdsorptionCollagenOral SurgeryBiomarkersClinical oral implants research
researchProduct

Fibrosis markers and CRIM1 increase in chronic heart failure of increasing severity.

2014

AbstractBackground: Fibrosis suppressors/activators in chronic heart failure (CHF) is a topic of investigation.Aim: To quantify serum levels of fibrosis regulators in CHF.Methods: ELISA tests were used to quantify fibrosis regulators, procollagen type-(PIP)I, (PIP)III, collagen-I, III, BMP1,2,3,7, SDF1α, CXCR4, fibulin 1,2,3, BMPER, CRIM1 and BAMBI in 66 CHF (NYHA class I, n = 9; II, n = 34; III n = 23), and in 14 controls.Results: In CHF, TGFβR2, PIPIII, SDF1α and CRIM1 were increased. PIPIII correlated with CRIM1.Conclusions: The BMPs inhibitor CRIM1 is increased and correlates with higher levels of serum PIPIII showing an imbalance in favor of pro-fibrotic mechanisms in CHF.

medicine.medical_specialtyHealth Toxicology and MutagenesisClinical BiochemistryInflammationBiochemistryGastroenterologySeverity of Illness IndexBone morphogenetic protein 1ElectrocardiographyFibrosisInternal medicinemedicineEndothelial dysfunction heart fibrosis inflammationHumanscardiovascular diseasesEndothelial dysfunctionHeart Failurebusiness.industryMembrane ProteinsBone Morphogenetic Protein Receptorsmedicine.diseaseFibulinProcollagen peptidaseHeart failureImmunologyChronic Diseasecardiovascular systemBAMBImedicine.symptombusinesscirculatory and respiratory physiology
researchProduct

Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration

2015

International audience; Members of the TGF-β superfamily transduce their signals through type I and II receptor serine/threonine kinases. The binding of activins to activin type IIA (ActRIIA) or type IIB (ActRIIB) receptors induces the recruitment and phosphorylation of an activin type I receptor (ALK4 and/or ALK7), which then phosphorylates the Smad2 and Smad3 intracellular signaling proteins. The regulation of members of the TGF-β family is known to be complex, because many proteins able to bind the ligands and inhibit their activities have been identified. Growth and differentiation factor 11 (Gdf11) belongs to the TGF-β family. GDF11, like other members of the TGF-β superfamily, is prod…

medicine.medical_specialtySmad2 ProteinProtein Serine-Threonine Kinases030204 cardiovascular system & hematologyBiology03 medical and health sciences0302 clinical medicine[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemInternal medicineTGF beta signaling pathway[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineHumansRegeneration[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyPharmacology (medical)PhosphorylationCCL11Activin type 2 receptors030304 developmental biologyPharmacology0303 health sciencesR-SMADcardiac regenerationGrowth differentiation factorHeartActivins[SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemCell biologyBMPR2Growth Differentiation FactorsEndocrinologyBone Morphogenetic ProteinsGDF11Smad2 ProteinSignal transductionActivin Receptors Type IerythropoiesisACVR2BSignal TransductionPharmacology & Therapeutics
researchProduct

Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus.

2010

SummaryNeural stem cells (NSCs) in the adult hippocampus divide infrequently, and the molecules that modulate their quiescence are largely unknown. Here, we show that bone morphogenetic protein (BMP) signaling is active in hippocampal NSCs, downstream of BMPR-IA. BMPs reversibly diminish proliferation of cultured NSCs while maintaining their undifferentiated state. In vivo, acute blockade of BMP signaling in the hippocampus by intracerebral infusion of Noggin first recruits quiescent NSCs into the cycle and increases neurogenesis; subsequently, it leads to decreased stem cell division and depletion of precursors and newborn neurons. Consistently, selective ablation of Bmpr1a in hippocampal …

medicine.medical_specialtyanimal structuresGenetic VectorsHippocampal formationBiologyBone morphogenetic proteinHippocampusModels BiologicalMOLNEUROCell LineMiceNeural Stem CellsInternal medicineGeneticsmedicineAnimalsHumansNogginBone Morphogenetic Protein Receptors Type ICells Culturedreproductive and urinary physiologySmad4 ProteinNeuronsReverse Transcriptase Polymerase Chain ReactionStem CellsCell CycleLentivirusNeurogenesisCentral-nervous-system; Bone morphogenetic protein; Dentate gyrus; Progenitor cells; Neurogenesis; Expression; Receptor; Noggin; Brain; DifferentiationCell BiologyFlow CytometrySTEMCELLRats Inbred F344BMPR1ANeural stem cellRatsCell biologyEndocrinologyStem cell divisionnervous systemembryonic structuresMolecular MedicineStem cellbiological phenomena cell phenomena and immunityCarrier ProteinsSignal Transduction
researchProduct

An approach to a biomimetic bone scaffold: increased expression of BMP-2 and of osteoprotegerin in SaOS-2 cells grown onto silica-biologized 3D print…

2012

Three-dimensional printed (3D printed) bone material is needed to close the shortage and to avoid the potential health risks associated with autografts and allografts, in the treatment of bone fractures/nonunions or bone trauma. Here we describe the fabrication of 3D printed scaffold, initially prepared form Ca-sulfate that has been impregnated/biologized with Ca-phosphate or with silica. The 3D printed grids had a size mesh of 200 μm; the chemical composition was determined by energy dispersive X-ray spectroscopy or conventional chemical analysis. Using human SaOS-2 cells (human osteogenic cells) it is shown that both the Ca-sulfate, and the Ca-phosphate or the silica impregnated Ca-sulfat…

musculoskeletal diseases0303 health sciencesScaffoldbiologyChemistryGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyBone morphogenetic protein 2In vitro03 medical and health sciencesmedicine.anatomical_structureOsteoprotegerinOsteoclastIn vivoRANKLmedicinebiology.proteinBiophysics0210 nano-technologySaos-2 cells030304 developmental biologyRSC Adv.
researchProduct

Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation)

2012

Bio-silica represents the main mineral component of the sponge skeletal elements (siliceous spicules), while bio-polyphosphate (bio-polyP), a multifunctional polymer existing in microorganisms and animals acts, among others, as reinforcement for pores in cell membranes. These natural inorganic bio-polymers, which can be readily prepared, either by recombinant enzymes (bio-silica and bio-polyP) or chemically (polyP), are promising materials/substances for the amelioration and/or treatment of human bone diseases and dysfunctions. It has been demonstrated that bio-silica causes in vitro a differential effect on the expression of the genes OPG and RANKL, encoding two mediators that control the …

musculoskeletal diseasesSiliconAnabolismBiomedical EngineeringOsteoclastsBioengineering02 engineering and technologyBone morphogenetic protein 2Phosphates03 medical and health sciencesMediatorOsteogenesisAnimalsHumansProgenitor cell030304 developmental biology0303 health sciencesOsteoblastsbiologyCatabolismChemistry021001 nanoscience & nanotechnologySilicon DioxideIn vitro3. Good healthCell biologyPoriferaRANKLImmunologybiology.proteinOsteoporosisBone Diseases0210 nano-technologyFunction (biology)BiotechnologyCurr. Opin. Biotechnol.
researchProduct