Search results for "Boost converter"
showing 7 items of 37 documents
A new current-mode control for DC/DC converter
2005
Current-sensing is used widely in smart power chips, especially in DC/DC converter for voltage regulator modules (VRM), implemented with interleaved synchronous rectifier buck converters. The interleaved technique main difficulty is due to its current-sharing control between the several modules. Besides, if the used control technique is current-mode type, it is necessary create a ramp signal proportional to current on the inductor. In this paper, a lossless current-sensing method, solving the major disadvantages of the current-mode control and implementing a current-sharing technique, is proposed. This innovative technique is tested in a two-module interleaved buck converter.
A Hybrid Control Strategy for Quadratic Boost Converters with Inductor Currents Estimation
2020
International audience; This paper deals with a control strategy for a DC-DC quadratic boost converter. In particular, a hybrid control scheme is proposed to encompass a control law and an observer for the estimation of the system states, based only on the measurements of the input and output voltages. Differently from classical control methods, where the controller is designed from a small-signal model, here the real model of the system is examined without considering the average values of the discrete variables. Using hybrid dynamical system theory, asymptotic stability of a neighborhood of the equilibrium point is established, ensuring practical stability of the origin, which contains es…
Sliding Mode Control of Quadratic Boost Converters Based on Min-Type Control Strategy
2023
The paper deals with the control of a quadratic boost converter supplied by low-voltage energy sources, such as photovoltaic panels, fuel cells, or batteries. The control scheme consists of two control loops. A min-type controller governs the inner loop to force the current state of the nominal model to converge in a neighborhood of the equilibrium state. The external loop processes the output tracking error using an integrator, and it allows reconfiguring the converter's working point by changing the equilibrium state given in the input to the internal loop. This configuration assures both zero tracking error of the output voltage and robustness against load and input voltage variations an…
Design and realization of a DC/DC converter with a partially saturated inductor
2017
DC/DC converters, in some types of applications such as portable equipments, can require more space than it is actually available. The inductor is typically the most bulky element and the possibility to reduce its size can save up to 50% of the converter volume and area [1][2], thus increasing the power density. This reduction, however, comes with nonlinear effects caused by the saturation of the ferromagnetic core. An appropriate modelling of the inductor and of the converter circuit is needed for guaranteeing a good output power quality (Fig. 1). A Boost converter with an inductor in the partially saturated roll-off operating zone was designed and realized to study the behaviour of DC/DC …
Grid integration of PEM fuel cell with multiphase switching for maximum power operation
2016
Energy storage in the form of electrolytic Hydrogen can play an important role for integration of intermittent renewable energy sources in the smart grid environment. Electrolytic Hydrogen can be used as a fuel in proton exchange membrane (PEM) fuel cell. In this work, a technique for multiphase switching of a DC-DC converter associated with grid integration of a PEM fuel cell stack for maximum power operation in non-dispatchable mode is proposed. The presented system consists of a PEM fuel cell stack which is operating in non-dispatchable mode of operation, DC-DC multiphase switching boost converter for maximum power operation and a grid tied three phase voltage source inverter (VSI). VSI …
A High-Efficiency, Low-Cost Solution for On-Board Power Converters
2012
Wide-input, low-voltage, and high-current applications are addressed. A single-ended isolated topology which improves the power efficiency, reduces both switching and conduction losses, and heavily lowers the system cost is presented. During each switching cycle, the transformer core reset is provided. The traditional tradeoff between the maximum allowable duty-cycle and the reset voltage is avoided and the off-voltage of active switches is clamped to the input voltage. Therefore, the system cost is heavily reduced and the converter is well suited for wide-input applications. Zero-voltage switching is achieved for active switches, and the power efficiency is greatly improved. In the output …
A high-efficiency regulation technique for a zero-voltage zero-current power switching converter
1998
This paper describes the application of a new regulation technique to a resonant converter that features zero-voltage (ZV) and zero-current (ZC) switching and works at constant frequency and duty cycle. The regulator utilizes the concept of regulating only a percentage of the total power in a bidirectional manner, thus allowing the converter to be optimized for both mass and efficiency. The proposed regulation technique has a wide range of applicability to almost all types of power converters or inverters that utilize a transformer to produce an isolated output. By using the concept of addition or subtraction of AC voltages, a fully regulated output voltage is achieved. The resultant effect…