Search results for "Boson"
showing 10 items of 1360 documents
Induced scalarization in boson stars and scalar gravitational radiation
2012
The dynamical evolution of boson stars in scalar-tensor theories of gravity is considered in the physical (Jordan) frame. We focus on the study of spontaneous and induced scalarization, for which we take as initial data configurations on the well-known S-branch of a single boson star in general relativity. We show that during the scalarization process a strong emission of scalar radiation occurs. The new stable configurations (S-branch) of a single boson star within a particular scalar-tensor theory are also presented.
Dynamic transition to spontaneous scalarization in boson stars
2010
We show that the phenomenon of spontaneous scalarization predicted in neutron stars within the framework of scalar-tensor tensor theories of gravity, also takes place in boson stars without including a self-interaction term for the boson field (other than the mass term), contrary to what was claimed before. The analysis is performed in the physical (Jordan) frame and is based on a 3+1 decomposition of spacetime assuming spherical symmetry.
Astrophysical bound on the majoron-Higgs-boson coupling
1989
Abstract We show that the coupling of the “standard” Higgs boson to majorons, that could lead to a very fast decay of the neutral Higgs scalar to invisible modes, can be bounded using astrophysical arguments. We discuss the relevance of this bound for low-energy phenomenology related to majoron production. The bound so obtained may also jeopardize the stability of the VEV hierarchy in the doublet and triplet majoron models if the mass of the top quark is less than the W mass. A similar analysis may be applied to other models which exhibit Goldstone-or pseudo-Goldstone-bosons in the spectrum.
Electroweak baryogenesis from a dark sector
2017
Adding an extra singlet scalar $S$ to the Higgs sector can provide a barrier at tree level between a false vacuum with restored electroweak symmetry and the true one. This has been demonstrated to readily give a strong phase transition as required for electroweak baryogenesis. We show that with the addition of a fermionic dark matter particle $\chi$ coupling to $S$, a simple UV-complete model can realize successful electroweak baryogenesis. The dark matter gets a CP asymmetry that is transferred to the standard model through a $CP\ portal\ interaction$, which we take to be a coupling of $\chi$ to $\tau$ leptons and an inert Higgs doublet. The CP asymmetry induced in left-handed $\tau$ lepto…
Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background
2020
Sterile neutrinos with mass in the eV-scale and large mixings of order $\theta_0\simeq 0.1$ could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson $\phi$. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, $M_\phi$, and its coupling to sterile neutrinos, $g_s$. Then, we explore how to probe part of the allowed parameter spa…
Search for a fermiophobic Higgs at LEP 2
2001
Higgs bosons predicted by the fermiophobic scenario within Two Higgs Doublets Models were searched for in the data collected by the DELPHI detector at centre-of-mass energies between 189 GeV and 202 GeV, corresponding to a total integrated luminosity of 380 pb^{-1}. No signal was found and confidence limits were derived in the framework of possible extensions of the Standard Model Higgs sector.
Search for a light exotic particle inJ/ψradiative decays
2012
Using a data sample containing 1.06x10^8 psi' events collected with the BESIII detector at the BEPCII electron-positron collider, we search for a light exotic particle X in the process psi' -> pi^+ pi^- J/psi, J/psi -> gamma X, X -> mu^+ mu^-. This light particle X could be a Higgs-like boson A^0, a spin-1 U boson, or a pseudoscalar sgoldstino particle. In this analysis, we find no evidence for any mu^+mu^- mass peak between the mass threshold and 3.0 GeV/c^2. We set 90%-confidence-level upper limits on the product-branching fractions for J/psi -> gamma A^0, A^0 -> mu^+ mu^- which range from 4x10^{-7} to 2.1x10^{-5}, depending on the mass of A^0, for M(A^0)<3.0 GeV/c^2. On…
ɛ-type contribution to baryon asymmetry from colored Higgs triplets
1991
In scenarios where the cosmological baryon asymmetry is generated in the decay of heavy colored Higgs triplets at the one-loop level (at least two triplets are needed), it is shown that in addition to the conventional triangle loop ({epsilon}{prime}-type effect), a new kind of diagram must be considered. This new type of diagram has its origin in the mixing of the two Higgs fields ({epsilon}-type effect). The mixing of the two Higgs fields violates {ital CP} provided they have at least two common decay channels. For small mixing angles, the new contribution can be bigger than the conventional one.
Probing the bond order wave phase transitions of the ionic Hubbard model by superlattice modulation spectroscopy
2017
An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidences, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions …
Accessing finite momentum excitations of the one-dimensional Bose-Hubbard model using superlattice modulation spectroscopy
2018
We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density matrix renormalization group and linear response theory, that such a superlattice modulation gives access to the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott-insulator, the response is characterized by a narrow energy absorption peak at a frequency approximately corresponding to the onsite interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of the effective value of the interaction strength. On th…