Search results for "Boundary Element Method."
showing 10 items of 158 documents
Application of dual boundary element method in active sensing
2013
In this paper, a boundary element method (BEM) for the dynamic analysis of 3D solid structures with bonded piezoelectric transducers is presented. The host structure is modelled with BEM and the piezoelectric transducers are formulated using a 3D semi-analytical finite element approach. The elastodynamic analysis of the entire structure is carried out in Laplace domain and the response in time domain is obtained by inverse Laplace transform. The BEM is validated against established finite element method (FEM).
A hybrid virtual–boundary element formulation for heterogeneous materials
2021
Abstract In this work, a hybrid formulation based on the conjoined use of the recently developed Virtual Element Method (VEM) and the Boundary Element Method (BEM) is proposed for the effective computational analysis of multi-region domains, representative of heterogeneous materials. VEM has been recently developed as a generalisation of the Finite Element Method (FEM) and it allows the straightforward employment of elements of general polygonal shape, maintaining a high level of accuracy. For its inherent features, it allows the use of meshes of general topology, including non-convex elements. On the other hand, BEM is an effective technique for the numerical solution of sets of boundary i…
A fast BEM for the analysis of damaged structures with bonded piezoelectric sensors
2010
A fast boundary element method for the analysis of three-dimensional solids with cracks and adhesively bonded piezoelectric patches, used as strain sensors, is presented. The piezoelectric sensors, as well as the adhesive layer, are modeled using a 3D state-space finite element approach. The piezoelectric patch model is formulated taking into account the full electro-mechanical coupling and embodying the suitable boundary conditions and it is eventually expressed in terms of the interface variables, to allow a straightforward coupling with the underlying host structure, which is modeled through a 3D dual boundary element method, for accurate analysis of cracks. The technique is computationa…
Fatigue crack growth through particulate clusters in polycarbonate material
2011
The interaction of a crack with a perfectly bonded inclusion or a cluster of inclusions in polycarbonate matrix was investigated through both numerical simulations and fatigue tests. Stress intensity factors (K(I)) were evaluated by boundary element method for several particle sizes, position and finally for inclusion cluster as a precursor study for the experiments. The numerical simulation has shown the crack tendency to circumvent the inclusions with consequential reduction of the growth rate. Fatigue crack growth tests were carried out on several particle-filled specimens at constant value of the applied stress intensity factor range (Delta K(Iapp)) highlighting the crack delay due to t…
A Boundary Element Formulation for Modelling Structural Health Monitoring Applications
2015
In this paper, a boundary element formulation for modelling pitch-catch damage detection applications is introduced. The current formulation has been validated by both finite element analyses and physical experiments. Comparing to the widely used finite element method, the current formulation does not only use less computational resources, but also demonstrates higher numerical stability. doi: 10.12783/SHM2015/221
A Strain Sensing Structural Health Monitoring System for Delaminated Composite Structures
2012
Structural Health Monitoring (SHM) for composite materials is becoming a primary task due to their extended use in safety critical applications. Different methods, based on the use of piezoelectric transducers as well as of fiber optics, has been successfully proposed to detect and monitor damage in composite structural components with particular attention focused on delamination cracks.In the present paper a Structural Health Monitoring model, based on the use of piezoelectric sensors, already proposed by the authors for isotropic damaged components, is extended to delaminated composite structures. The dynamic behavior of the host damaged structure and the bonded piezoelectric sensors is m…
A regular variational boundary model for free vibrations of magneto-electro-elastic structures
2011
In this paper a regular variational boundary element formulation for dynamic analysis of two-dimensional magneto-electro-elastic domains is presented. The method is based on a hybrid variational principle expressed in terms of generalized magneto-electro-elastic variables. The domain variables are approximated by using a superposition of weighted regular fundamental solutions of the static magneto-electro-elastic problem, whereas the boundary variables are expressed in terms of nodal values. The variational principle coupled with the proposed discretization scheme leads to the calculation of frequency-independent and symmetric generalized stiffness and mass matrices. The generalized stiffne…
Initial strain effects in multilayer composite laminates
2001
A boundary integral formulation for the analysis of stress fields induced in composite laminates by initial strains, such as may be due to temperature changes and moisture absorption is presented. The study is formulated on the basis of the theory of generalized orthotropic thermo-elasticity and the governing integral equations are directly deduced through the generalized reciprocity theorem. A suitable expression of the problem fundamental solutions is given for use in computations. The resulting linear system of algebraic equations is obtained by the boundary element method and stress interlaminar distributions in the boundary-layer are calculated by using a boundary only discretization. …
BIEM-based variational principles for elastoplasticity with unilateral contact boundary conditions
1998
The structural step problem for elastic-plastic internal-variable materials is addressed in the presence of frictionless unilateral contact conditions. Basing on the BIEM (boundary integral equation method) and making use of deformation-theory plasticity (through the backward-difference method of computational plasticity), two variational principles are shown to characterize the solution to the step problem: one is a stationarity principle having as unknowns all the problem variables, the other is a saddle-point principle having as unknowns the increments of the boundary tractions and displacements, along with the plastic strain increments in the domain. The discretization by boundary and i…
The symmetric boundary element method for unilateral contact problems
2008
Abstract On the basis of the boundary integral equation method, in its symmetric formulation, the frictionless unilateral contact between two elastic bodies has been studied. A boundary discretization by boundary elements leads to an algebraic formulation in the form of a linear complementarity problem. In this paper the process of contact or detachment is obtained through a step by step analysis by using generalized (weighted) quantities as the check elements: the detachment or the contact phenomenon may happen when the weighted traction or the weighted displacement is greater than the weighted cohesion or weighted minimum reference gap, respectively. The applications are performed by usin…