Search results for "Boundary problem"

showing 10 items of 51 documents

Morse-Smale index theorems for elliptic boundary deformation problems.

2012

AbstractMorse-type index theorems for self-adjoint elliptic second order boundary value problems arise as the second variation of an energy functional corresponding to some variational problem. The celebrated Morse index theorem establishes a precise relation between the Morse index of a geodesic (as critical point of the geodesic action functional) and the number of conjugate points along the curve. Generalization of this theorem to linear elliptic boundary value problems appeared since seventies. (See, for instance, Smale (1965) [12], Uhlenbeck (1973) [15] and Simons (1968) [11] among others.) The aim of this paper is to prove a Morse–Smale index theorem for a second order self-adjoint el…

Pure mathematicsGeodesicApplied MathematicsMathematical analysisMixed boundary conditionSpectral flow Maslov index Index Theory Elliptic boundary value problemsElliptic boundary value problemsElliptic boundary value problemElliptic boundary deformation problemMaslov indexNeumann boundary conditionFree boundary problemSpectral flowElliptic boundary deformation problemsIndex TheoryBoundary value problemAtiyah–Singer index theoremAnalysisEnergy functionalMathematics
researchProduct

Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions and L1-data

2008

Abstract We consider a degenerate elliptic–parabolic problem with nonlinear dynamical boundary conditions. Assuming L 1 -data, we prove existence and uniqueness in the framework of renormalized solutions. Particular instances of this problem appear in various phenomena with changes of phase like multiphase Stefan problems and in the weak formulation of the mathematical model of the so-called Hele–Shaw problem. Also, the problem with non-homogeneous Neumann boundary condition is included.

Renormalized solutionsApplied MathematicsDegenerate energy levelsMathematical analysisMixed boundary conditionHele–Shaw problemWeak formulationMultiphase Stefan problemsNonlinear systemNeumann boundary conditionFree boundary problemUniquenessBoundary value problemAnalysisMathematicsDegenerate elliptic–parabolic problemsJournal of Differential Equations
researchProduct

Existence of a traveling wave solution in a free interface problem with fractional order kinetics

2021

Abstract In this paper we consider a system of two reaction-diffusion equations that models diffusional-thermal combustion with stepwise ignition-temperature kinetics and fractional reaction order 0 α 1 . We turn the free interface problem into a scalar free boundary problem coupled with an integral equation. The main intermediary step is to reduce the scalar problem to the study of a non-Lipschitz vector field in dimension 2. The latter is treated by qualitative topological methods based on the Poincare-Bendixson Theorem. The phase portrait is determined and the existence of a stable manifold at the origin is proved. A significant result is that the settling time to reach the origin is fin…

Settling timeScalar (mathematics)01 natural sciencesPoincare-Bendixson TheoremTraveling wave solutionsMathematics - Analysis of PDEsDimension (vector space)Free boundary problemFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Trapping triangles0101 mathematicsMathematicsPhase portraitApplied Mathematics010102 general mathematicsMathematical analysisIntegral equationStable manifoldDiffusional-thermal combustionFree interface problems010101 applied mathematicsVector fieldFractional order kineticsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Mass-flux-based outlet boundary conditions for the lattice Boltzmann method

2009

We present outlet boundary conditions for the lattice Boltzmann method. These boundary conditions are constructed with a mass-flux-based approach. Conceptually, the mass-flux-based approach provides a mathematical framework from which specific boundary conditions can be derived by enforcing given physical conditions. The object here is, in particular, to explain the mass-flux-based approach. Furthermore, we illustrate, transparently, how boundary conditions can be derived from the emerging mathematical framework. For this purpose, we derive and present explicitly three outlet boundary conditions. By construction, these boundary conditions have an apparent physical interpretation which is fu…

Statistics and ProbabilityMathematical analysisMason–Weaver equationBoundary conformal field theoryStatistical and Nonlinear PhysicsDifferent types of boundary conditions in fluid dynamicsSingular boundary methodBoundary knot methodBoundary conditions in CFDFree boundary problemBoundary value problemStatistical physicsStatistics Probability and UncertaintyMathematicsJournal of Statistical Mechanics: Theory and Experiment
researchProduct

Mean-field games and two-point boundary value problems

2014

A large population of agents seeking to regulate their state to values characterized by a low density is considered. The problem is posed as a mean-field game, for which solutions depend on two partial differential equations, namely the Hamilton-Jacobi-Bellman equation and the Fokker-Plank-Kolmogorov equation. The case in which the distribution of agents is a sum of polynomials and the value function is quadratic is considered. It is shown that a set of ordinary differential equations, with two-point boundary value conditions, can be solved in place of the more complicated partial differential equations associated with the problem. The theory is illustrated by a numerical example.

Stochastic partial differential equationDifferential equationMathematical analysisFree boundary problemFirst-order partial differential equationBoundary value problemHyperbolic partial differential equationNumerical partial differential equationsSeparable partial differential equationMathematics53rd IEEE Conference on Decision and Control
researchProduct

Strictly convergent algorithm for an elliptic equation with nonlocal and nonlinear boundary conditions

2012

The paper describes a formally strictly convergent algorithm for solving a class of elliptic problems with nonlinear and nonlocal boundary conditions, which arise in modeling of the steady-state conductive-radiative heat transfer processes. The proposed algorithm has two levels of iterations, where inner iterations by means of the damped Newton method solve an appropriate elliptic problem with nonlinear, but local boundary conditions, and outer iterations deal with nonlocal terms in boundary conditions.

conductive-radiative heat transferelliptic equationMathematical analysisMixed boundary conditionRobin boundary conditionPoincaré–Steklov operatorNonlinear systemElliptic curveNewton methodModeling and SimulationQA1-939Neumann boundary conditionFree boundary problemBoundary value problemAlgorithmMathematicsAnalysisMathematicsMathematical Modelling and Analysis
researchProduct

Optimal control in models with conductive‐radiative heat transfer

2003

In this paper an optimal control problem for the elliptic boundary value problem with nonlocal boundary conditions is considered. It is shown that the weak solutions of the boundary value problem depend smoothly on the control parameter and that the cost functional of the optimal control problem is Frechet differentiable with respect to the control parameter. Optimalus valdymas modeliuose su laidžiu-radioaktyviu šilumos pernešimu Santrauka Darbe nagrinejamas nelokalaus kraštinio uždavinio optimalaus valdymo uždavinys. Parodyta, kad silpnasis kraštinio uždavinio sprendinys tolydžiai priklauso nuo valdomojo parametro, taigi, optimalaus valdymo tikslo funkcija yra diferencijuojama Freše prasme…

elliptic equationMathematical analysisradiative heat transferMixed boundary conditionOptimal controlElliptic boundary value problemRobin boundary conditionnonlocal boundary conditionsBoundary conditions in CFDShooting methodModeling and Simulationboundary value problemFree boundary problemQA1-939Boundary value problemAnalysisMathematicsMathematicsMathematical Modelling and Analysis
researchProduct

Boundary value problem with integral condition for a Blasius type equation

2016

The steady motion in the boundary layer along a thin flat plate, which is immersed at zero incidence in a uniform stream with constant velocity, can be described in terms of the solution of the differential equation x'''= -xx'', which satisfies the boundary conditions x(0) = x'(0) = 0, x'(∞) = 1. The author investigates the generalized boundary value problem consisting of the nonlinear third-order differential equation x''' = -trx|x|q-1x'' subject to the integral boundary conditions x(0) = x'(0) = 0, x'(∞) = λ∫0ξx(s) ds, where 0 0 is a parameter. Results on the existence and uniqueness of solutions to boundary value problem are established. An illustrative example is provided.

integral boundary conditionsApplied Mathematics010102 general mathematicsMathematical analysisBoundary (topology)lcsh:QA299.6-433Mixed boundary conditionBlasius equationlcsh:Analysisboundary layer01 natural sciencesRobin boundary condition010101 applied mathematicssymbols.namesakeexistence and uniqueness of solutionsDirichlet boundary conditionBlasius boundary layersymbolsFree boundary problemNeumann boundary conditionBoundary value problem0101 mathematicsAnalysisMathematicsNonlinear Analysis
researchProduct

Multiplicity results for asymmetric boundary value problems with indefinite weights

2004

We prove existence and multiplicity of solutions, with prescribed nodal properties, to a boundary value problem of the formu″+f(t,u)=0,u(0)=u(T)=0. The nonlinearity is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite weights. We first study some auxiliary half-linear, two-weighted problems for which an eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of weighted eigenvalues. The proof is developed in the framework of topological methods and is based on some relations between rotation numbers and weighted eigenvalues.

lcsh:MathematicsApplied MathematicsMultiplicity resultsMathematical analysis34B15Of the formMultiplicity (mathematics)Mixed boundary conditionlcsh:QA1-939Asymmetric boundary value problem asymptotically linear two-weighted problems eigenvalue theory topological methods rotation number multiplicity resultFree boundary problemBoundary value problemAnalysisMathematicsAbstract and Applied Analysis
researchProduct

Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems

2019

The paper is concerned with space–time IgA approximations to parabolic initial–boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of such type of approximations and investigate their efficiency. The derivation of error estimates is based on the analysis of the corresponding integral identity and exploits purely functional arguments in the maximal parabolic regularity setting. The estimates are valid for any approximation from the admissible (energy) class and do not contain mesh-dependent constants. They provide computable and fully guaranteed error bounds for the norms arising in stabilised space–time approximations. Furthermore, a p…

osittaisdifferentiaaliyhtälötominaisarvotfunctional error estimatesguaranteed error boundsadaptive space–time schemesnumeerinen analyysivirheanalyysistabilised space–time IgA schemesparabolic initial-value boundary problems
researchProduct