Search results for "Bounded function"
showing 10 items of 508 documents
Quantum Property Testing for Bounded-Degree Graphs
2011
We study quantum algorithms for testing bipartiteness and expansion of bounded-degree graphs. We give quantum algorithms that solve these problems in time O(N^(1/3)), beating the Omega(sqrt(N)) classical lower bound. For testing expansion, we also prove an Omega(N^(1/4)) quantum query lower bound, thus ruling out the possibility of an exponential quantum speedup. Our quantum algorithms follow from a combination of classical property testing techniques due to Goldreich and Ron, derandomization, and the quantum algorithm for element distinctness. The quantum lower bound is obtained by the polynomial method, using novel algebraic techniques and combinatorial analysis to accommodate the graph s…
Deformed quons and bi-coherent states
2017
We discuss how a q-mutation relation can be deformed replacing a pair of conjugate operators with two other and unrelated operators, as it is done in the construction of pseudo-fermions, pseudo-bosons and truncated pseudo-bosons. This deformation involves interesting mathematical problems and suggests possible applications to pseudo-hermitian quantum mechanics. We construct bi-coherent states associated to $\D$-pseudo-quons, and we show that they share many of their properties with ordinary coherent states. In particular, we find conditions for these states to exist, to be eigenstates of suitable annihilation operators and to give rise to a resolution of the identity. Two examples are discu…
Cocharacters of group graded algebras and multiplicities bounded by one
2017
Let G be a finite group and A a G-graded algebra over a field F of characteristic zero. We characterize the (Formula presented.)-ideals (Formula presented.) of graded identities of A such that the multiplicities (Formula presented.) in the graded cocharacter of A are bounded by one. We do so by exhibiting a set of identities of the (Formula presented.)-ideal. As a consequence we characterize the varieties of G-graded algebras whose lattice of subvarieties is distributive.
On the structure of the similarity orbits of Jordan operators as analytic homogeneous manifolds
1989
For Jordan elementsJ in a topological algebraB with unite, an open groupB−1 of invertible elements and continuous inversion we consider the similarity orbitsS G (J)={gJg−1:g∈G} (G the groupB−1⋂{e+c:c∈I},I⊂B a bilateral continuous embedded topological ideal). We construct rational local cross sections to the conjugation mapping\(\pi ^J G \to S_G \left( J \right)\left( {\pi ^J \left( g \right) = gJg^{ - 1} } \right)\) and give to the orbitS G (J) the local structure of a rational manifold. Of particular interest is the caseB=L(H) (bounded linear operators on a separable Hilbert spaceH),I=B, for which we obtain the following: 1. If for a Hilbert space operator there exist norm continuous local…
Complexity of gauge bounded Cartier algebras
2019
We show that a gauge bounded Cartier algebra has finite complexity. We also give an example showing that the converse does not hold in general.Communicated by Graham J. Leuschke
Multiplicity of solutions to a nonlinear boundary value problem of concave–convex type
2015
Abstract Problem (P) { − Δ p u + | u | p − 2 u = | u | r − 1 u x ∈ Ω | ∇ u | p − 2 ∂ u ∂ ν = λ | u | s − 1 u x ∈ ∂ Ω , where Ω ⊂ R N is a bounded smooth domain, ν is the unit outward normal at ∂ Ω , Δ p is the p -Laplacian operator and λ > 0 is a parameter, was studied in Sabina de Lis (2011) and Sabina de Lis and Segura de Leon (in press). Among other features, it was shown there that when exponents lie in the regime 1 s p r , a minimal positive solution exists if 0 λ ≤ Λ , for a certain finite Λ , while no positive solutions exist in the complementary range λ > Λ . Furthermore, in the radially symmetric case a second positive solution exists for λ varying in the same full range ( 0 , Λ ) …
A priori bounds and multiplicity of solutions for an indefinite elliptic problem with critical growth in the gradient
2019
Let $\Omega \subset \mathbb R^N$, $N \geq 2$, be a smooth bounded domain. We consider a boundary value problem of the form $$-\Delta u = c_{\lambda}(x) u + \mu(x) |\nabla u|^2 + h(x), \quad u \in H^1_0(\Omega)\cap L^{\infty}(\Omega)$$ where $c_{\lambda}$ depends on a parameter $\lambda \in \mathbb R$, the coefficients $c_{\lambda}$ and $h$ belong to $L^q(\Omega)$ with $q>N/2$ and $\mu \in L^{\infty}(\Omega)$. Under suitable assumptions, but without imposing a sign condition on any of these coefficients, we obtain an a priori upper bound on the solutions. Our proof relies on a new boundary weak Harnack inequality. This inequality, which is of independent interest, is established in the gener…
Regularity and Algebras of Analytic Functions in Infinite Dimensions
1996
A Banach space E E is known to be Arens regular if every continuous linear mapping from E E to E ′ E’ is weakly compact. Let U U be an open subset of E E , and let H b ( U ) H_b(U) denote the algebra of analytic functions on U U which are bounded on bounded subsets of U U lying at a positive distance from the boundary of U . U. We endow H b ( U ) H_b(U) with the usual Fréchet topology. M b ( U ) M_b(U) denotes the set of continuous homomorphisms ϕ : H b ( U ) → C \phi :H_b(U) \to \mathbb {C} . We study the relation between the Arens regularity of the space E E and the structure of M b ( U ) M_b(U) .
Existence and gap-bifurcation of multiple solutions to certain nonlinear eigenvalue problems
1993
IN THIS PAPER we study: (i) a class of operator equations in an abstract Hilbert space; and (ii) the L2-theory of certain nonlinear Schrodinger equations which can be viewed as special cases of (i). In order to describe the type of abstract nonlinear eigenvalue problems to be discussed, consider a real Hilbert space H with scalar product (* , *) and norm II.11 and let S be a (not necessarily bounded) positive self-adjoint linear operator in li. We write S in the form
Homomorphisms between Algebras of Holomorphic Functions
2014
For two complex Banach spaces X and Y, in this paper, we study the generalized spectrum M-b(X,Y) of all nonzero algebra homomorphisms from H-b(X), the algebra of all bounded type entire functions on X into H-b(Y). We endow M-b(X,Y) with a structure of Riemann domain over L(X*,Y*) whenever.. is symmetrically regular. The size of the fibers is also studied. Following the philosophy of ( Aron et al., 1991), this is a step to study the set M-b,M-infinity (X,B-Y) of all nonzero algebra homomorphisms from Hb(b) (X) into H-infinity (B-Y) of bounded holomorphic functions on the open unit ball of Y and M-infinity(B-X,B-Y) of all nonzero algebra homomorphisms from H-infinity(B-X) into H infinity (B-Y…