Search results for "Bounded function"
showing 10 items of 508 documents
Hypersurfaces of prescribed mean curvature over obstacles
1973
Let ~2 be a bounded domain in the euclidean space IR", n-> 2, with Lipschitz boundary ~ . We shall consider surfaces which are graphs of functions u defined on f2 having prescribed mean curvature H=H(x, u) with the side condition that they should be bounded from below by an obstacle ~b. The case H = 0 (minimal surfaces) has been discussed in detail by several authors, compare [6, 7, 12, 13, 17, 18, 20, 21, 24] of the references. Tomi [-31] has also investigated parametric surfaces with variable H. More general variational problems with obstructions have been discussed in [-9] and [-10]. During the session on "Variationsrechnung", held from June 18th to June 24th, 1972 in Oberwolfach, Mirand…
Splitting Magnitude Response into Real and Imaginary Parts
2017
The determination of real and imaginary parts from magnitude responses is studied for causal linear time-invariant systems having monotonic impulse responses. It is demonstrated that the problem can be interpreted as a special filtering task in the Mellin transform domain having a diffuse magnitude response bounded by the magnitude responses of the filters corresponding to zero and maximum imaginary parts prescribed by the Kronig-Kramers relations. Discrete-time filters processing geometrically sampled magnitude responses are designed for determining the real and imaginary parts. Testing results are presented verifying the performance of the filters.
The asymptotic behavior of the solutions of the Cauchy problem generated by ϕ-accretive operators
2005
Abstract The purpose of this paper is to study the asymptotic behavior of the solutions of certain type of differential inclusions posed in Banach spaces. In particular, we obtain the abstract result on the asymptotic behavior of the solution of the boundary value problem { u t − Δ p ( u ) + | u | γ − 1 u = f on ] 0 , ∞ [ × Ω , − ∂ u ∂ η ∈ β ( u ) on [ 0 , ∞ [ × ∂ Ω , u ( 0 , x ) = u 0 ( x ) in Ω , where Ω is a bounded open domain in R n with smooth boundary ∂Ω, f ( t , x ) is a given L 1 -function on ] 0 , ∞ [ × Ω , γ ⩾ 1 and 1 ⩽ p ∞ . Δ p represents the p-Laplacian operator, ∂ ∂ η is the associated Neumann boundary operator and β a maximal monotone graph in R × R with 0 ∈ β ( 0 ) .
Doubly nonlinear periodic problems with unbounded operators
2004
Abstract The solvability of the evolution system v ′( t )+ B ( t ) u ( t )∋ f ( t ), v ( t )∈ A ( t ) u ( t ), 0 t T , with the periodic condition v (0)= v ( T ) is investigated in the case where A (t) are bounded, possibly degenerate, subdifferentials and B (t) are unbounded subdifferentials.
Regular solutions of transmission and interaction problems for wave equations
1989
Consider n bounded domains Ω ⊆ ℝ and elliptic formally symmetric differential operators A1 of second order on Ωi Choose any closed subspace V in , and extend (Ai)i=1,…,n by Friedrich's theorem to a self-adjoint operator A with D(A1/2) = V (interaction operator). We give asymptotic estimates for the eigenvalues of A and consider wave equations with interaction. With this concept, we solve a large class of problems including interface problems and transmission problems on ramified spaces.25,32 We also treat non-linear interaction, using a theorem of Minty29.
Notes on the subspace perturbation problem for off-diagonal perturbations
2014
The variation of spectral subspaces for linear self-adjoint operators under an additive bounded off-diagonal perturbation is studied. To this end, the optimization approach for general perturbations in [J. Anal. Math., to appear; arXiv:1310.4360 (2013)] is adapted. It is shown that, in contrast to the case of general perturbations, the corresponding optimization problem can not be reduced to a finite-dimensional problem. A suitable choice of the involved parameters provides an upper bound for the solution of the optimization problem. In particular, this yields a rotation bound on the subspaces that is stronger than the previously known one from [J. Reine Angew. Math. (2013), DOI:10.1515/cre…
Approximation by uniform domains in doubling quasiconvex metric spaces
2020
We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains.
Fractional Laplacians in bounded domains: Killed, reflected, censored, and taboo Lévy flights.
2018
The fractional Laplacian $(- \Delta)^{\alpha /2}$, $\alpha \in (0,2)$ has many equivalent (albeit formally different) realizations as a nonlocal generator of a family of $\alpha $-stable stochastic processes in $R^n$. On the other hand, if the process is to be restricted to a bounded domain, there are many inequivalent proposals for what a boundary-data respecting fractional Laplacian should actually be. This ambiguity holds true not only for each specific choice of the process behavior at the boundary (like e.g. absorbtion, reflection, conditioning or boundary taboos), but extends as well to its particular technical implementation (Dirchlet, Neumann, etc. problems). The inferred jump-type …
Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents
1984
Abstract In this paper we study the existence of nontrivial solutions for the boundary value problem { − Δ u − λ u − u | u | 2 ⁎ − 2 = 0 in Ω u = 0 on ∂ Ω when Ω⊂Rn is a bounded domain, n ⩾ 3, 2 ⁎ = 2 n ( n − 2 ) is the critical exponent for the Sobolev embedding H 0 1 ( Ω ) ⊂ L p ( Ω ) , λ is a real parameter. We prove that there is bifurcation from any eigenvalue λj of − Δ and we give an estimate of the left neighbourhoods ] λ j ⁎ , λj] of λj, j∈N, in which the bifurcation branch can be extended. Moreover we prove that, if λ ∈ ] λ j ⁎ , λj[, the number of nontrivial solutions is at least twice the multiplicity of λj. The same kind of results holds also when Ω is a compact Riemannian manif…
Isometric dilations and 𝐻^{∞} calculus for bounded analytic semigroups and Ritt operators
2017
We show that any bounded analytic semigroup on L p L^p (with 1 > p > ∞ 1>p>\infty ) whose negative generator admits a bounded H ∞ ( Σ θ ) H^{\infty }(\Sigma _\theta ) functional calculus for some θ ∈ ( 0 , π 2 ) \theta \in (0,\frac {\pi }{2}) can be dilated into a bounded analytic semigroup ( R t ) t ⩾ 0 (R_t)_{t\geqslant 0} on a bigger L p L^p -space in such a way that R t R_t is a positive contraction for any t ⩾ 0 t\geqslant 0 . We also establish a discrete analogue for Ritt operators and consider the case when L p L^p -spaces are replaced by more general Banach spaces. In connection with these functional calculus issues, we study isometric dilations of bounded continuous rep…