Search results for "Brain Wave"
showing 4 items of 24 documents
Sevoflurane-induced reduction of bispectral index does not affect human cerebral microcirculation
2015
Measuring frequency domain granger causality for multiple blocks of interacting time series
2011
In the past years, several frequency-domain causality measures based on vector autoregressive time series modeling have been suggested to assess directional connectivity in neural systems. The most followed approaches are based on representing the considered set of multiple time series as a realization of two or three vector-valued processes, yielding the so-called Geweke linear feedback measures, or as a realization of multiple scalar-valued processes, yielding popular measures like the directed coherence (DC) and the partial DC (PDC). In the present study, these two approaches are unified and generalized by proposing novel frequency-domain causality measures which extend the existing meas…
Dynamic networks of physiologic interactions of brain waves and rhythms in muscle activity.
2022
The brain plays a central role in facilitating vital body functions and in regulating physiological and organ systems, including the skeleto-muscular and locomotor system. While neural control is essential to synchronize and coordinate activation of various muscle groups and muscle fibers within muscle groups in relation to body movements and distinct physiologic states, the dynamic networks of brain-muscle interactions have not been explored and the complex regulatory mechanism of brain-muscle control remains unknown. Here we present a first study of network interactions between brain waves at different cortical locations and peripheral muscle activity across key physiologic states - wake,…
Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation an…
2020
Hippocampus forms neural representations of real-life events including multimodal information of spatial and temporal context. These representations, i.e. organized sequences of neuronal firing are repeated during following rest and sleep, especially when so-called sharp-wave ripples (SPW-Rs) characterize hippocampal local-field potentials. This SPW-R –related replay is thought to underlie memory consolidation. Here, we set out to explore how hippocampal CA1 pyramidal cells respond to the conditioned stimulus during trace eyeblink conditioning and how these responses manifest during SPW-Rs in awake adult female New Zealand White rabbits. Based on reports in rodents, we expected SPW-Rs to ta…