Search results for "Breeding blanket"
showing 10 items of 43 documents
Identification of blanket design points using an integrated multi-physics approach
2017
Abstract The breeding blanket (BB) is one of the key components for a fusion reactor. It is expected to sustain and remove considerable heat loads due to the heat flux coming from the plasma and the nuclear power deposited by the fusion neutrons. In the design of the BB, the engineering requirements of nuclear, material and safety kind are involved. In the European DEMO project, several efforts are dedicated to the development of an integrated simulation-design tool able to perform a multi-physics analysis, allowing the characterisation of BB design points which are consistent from the neutronic, thermal-hydraulic and thermo-mechanical point of view. Furthermore, at Karlsruhe Institute of T…
Integrated design of breeding blanket and ancillary systems related to the use of helium or water as a coolant and impact on the overall plant design
2021
Currently, for the EU DEMO, two Breeding Blankets (BBs) have been selected as potential candidates for the integration in the reactor. They are the Water Cooled Lithium Lead and the Helium Cooled Pebble Bed BB concepts. The two BB variants together with the associated ancillary systems drive the design of the overall plant. Therefore, a holistic investigation of integration issues derived by the BB and the installation of its ancillary systems has been performed. The issues related to the water activation due to the 16N and 17N isotopes and the impact on the primary heat transfer systems have been investigated providing guidelines and dedicated solution for the integration of safety devices…
The DEMO water-cooled lead–lithium breeding blanket: design status at the end of the pre-conceptual design phase
2021
The Water-Cooled Lead–Lithium Breeding Blanket (WCLL BB) is one of the two blanket concept candidates to become the driver blanket of the EU-DEMO reactor. The design was enacted with a holistic approach. The influence that neutronics, thermal-hydraulics (TH), thermo-mechanics (TM) and magneto-hydro-dynamics (MHD) may have on the design were considered at the same time. This new approach allowed for the design team to create a WCLL BB layout that is able to comply with different foreseen requirements in terms of integration, tritium self-sufficiency, and TH and TM needs. In this paper, the rationale behind the design choices and the main characteristics of the WCLL BB needed for the EU-DEMO …
Structural assessment of a whole toroidal sector of the HELIAS 5-B breeding blanket
2021
Abstract The European roadmap for the realization of fusion energy considers the stellarator line as a possible long-term alternative to a tokamak DEMO. In this context, from the plasma physics standpoint, the most promising option is a five-field period power plant called HELIcal-axis Advanced Stellarator (HELIAS) 5-B. In order to allow the electricity production, the HELIAS 5-B reactor must be endowed with a breeding blanket (BB). Hence, in this paper, the advancements in the HELIAS 5-B BB design are reported. In particular, the structural assessment of a whole BB period, extending along toroidal direction for 72 °, is depicted. A geometric configuration encompassing dummy BB segments has…
Validation of Multi-Physics Integrated Procedure for the HCPB Breeding Blanket
2019
The wide range of requirements and constraints involved in the design of nuclear components for fusion reactors makes the development of multi-physics analysis procedures of utmost importance. In the framework of the European DEMO project, the Karlsruhe Institute of Technology (KIT) is dedicating several efforts to the development of a multi-physics analysis tool allowing the characterization of breeding blanket design points which are consistent from the neutronic, thermal-hydraulic and thermal-mechanical points of view. In particular, a procedure developed at KIT is characterized by the implementation of analysis software only. A preliminary step for the validation of such a procedure ha…
Preliminary thermal optimization and investigation of the overall structural behaviour of the EU-DEMO water-cooled lead lithium left outboard blanket…
2022
The conceptual design phase of the EU-DEMO reactor has been recently launched, with the aim of evolving the DEMO pre-conceptual layout towards a more robust and articulated geometric configuration able to cope with most of the design requirements and to show further margins for the passing of the current potential show-stoppers. Hence, the achievement of the conceptual design of the Water-Cooled Lead Lithium Breeding Blanket (WCLL BB) is one of the milestones the EUROfusion consortium aims to achieve in the close future. To this purpose, within the framework of the research activities promoted by EUROfusion, a research campaign has been launched at the University of Palermo, in close cooper…
Development of helium coolant DEMO first wall model for SYCOMORE system code based on HCLL concept
2018
Abstract The conceptual design of the demonstration fusion power reactor, known as DEMO, is ongoing and several reactor configurations have to be investigated by exploring different design parameters. For these reasons, within the European framework, systems codes like SYCOMORE (SYstem COde for MOdelling tokamak REactor) have been developed. SYCOMORE includes several specific modules, one of which is aimed to define a suitable design of the helium breeding blanket. The research activity has been devoted to improve the method to define automatically the First Wall design starting from thermal-hydraulic and thermo-mechanical considerations, using analytical design formulae and, also, taking i…
Progress of the conceptual design of the European DEMO breeding blanket, tritium extraction and coolant purification systems
2020
Abstract In the frame of the EUROfusion consortium activities the Helium Cooled Pebble Bed (HCPB) and the Water Cooled Lithium Lead (WCLL) concepts are being developed as possible candidates to become driver Breeding Blanket (BB) for the EU DEMO, which aims at the tritium self-sufficiency and net electricity production. The two BB design options encompass water or helium as coolants and solid ceramic with beryllium/beryllides or PbLi as tritium breeder and neutron multipliers. The BB segments have evolved towards a more stable conceptual design taking into account multiple feasibility aspects and requirements imposed by interfacing systems. Possible solutions to improve shielding capabiliti…
Advancements in DEMO WCLL breeding blanket design and integration
2018
The water-cooled lithium-lead breeding blanket is a candidate option for the European Demonstration Power Plant (DEMO) nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium-lead as breeder-multiplier, pressurized water as coolant, and EUROFER as structural material. The current design is based on DEMO 2015 specifications and represents the follow-up of the design developed in 2015. The single-module-segment approach is employed. This is constituted by a basic geometry repeated along the poloidal direction. The power is removed by means of radial-toroidal (i.e., horizontal) water cooling tubes in the breeding zone. The lithium-lead flows in a radial-poloidal dire…
Development and application of multiscale procedures for the thermomechanical analysis of the DEMO Water-Cooled Lithium Lead Breeding Blanket
2022
The Breeding Blanket is an essential component of the DEMO fusion reactor and its design is one of the pivotal purposes of the DEMO project. Indeed, this component has to withstand severe operating conditions, as it is directly exposed to the plasma, making its design particularly challenging. In particular, the Water-Cooled Lithium-Lead (WCLL) BB concept is one of the candidates currently considered for the conceptual design of the European DEMO reactor. The development of a robust BB system is crucial for the design of the whole DEMO reactor and the thermo-mechanical assessment of the whole BB segments is mandatory to allow checking their structural performances in different loading scena…