Search results for "Bromodomain"

showing 7 items of 7 documents

Abstract C75: Overcoming KRAS/LKB1 mutant NSCLC resistance to BET bromodomain inhibitors with gemcitabine or Mcl-1 inhibition

2015

Abstract The purpose of our study was to define a method and mechanism for overcoming the resistance of clinically relevant KRAS-mutant/LKB1-deficient NSCLC cells to the BET-bromodomain inhibitor JQ1. LKB1 (Serine/threonine kinase 11) is mutated with loss of function in conjunction with mutated KRAS in 7-10% of NSCLC. Importantly, KRAS-mutant/LKB1-deficiency is associated with tumor aggressiveness and poor survival in human patients as well as in genetically engineered mouse models. Indeed, although the BET bromodomain inhibitor JQ1 dramatically reduces tumor volume in KRAS mutant mice, it has little effect in KRAS-mutant/LKB1-deficient mice. BET bromodomain proteins are chromatin readers t…

A549 cellCancer ResearchGene knockdownKinaseBiologymedicine.disease_causeGemcitabineBromodomainOncologyApoptosisImmunologymedicineCancer researchOncogene MYCKRASneoplasmsmedicine.drugMolecular Cancer Therapeutics
researchProduct

An evaluation of RVX-208 for the treatment of atherosclerosis

2015

Introduction: RVX-208 is a first-in-class, orally active, novel small molecule in development by Resverlogix Corporation (Calgary, AB, Canada). It acts through an epigenetic mechanism by inhibiting the bromodomain and extraterminal (BET) family of proteins, increasing apolipoprotein A-I (apoA-I) and targeting high-density lipoprotein (HDL) metabolism, including generating of nascent HDL and increased larger HDL particles, resulting in the stimulation of reverse cholesterol transport. RVX-208 also has a beneficial effect on inflammatory factors known to be involved in atherosclerosis and plaque stability. New therapeutic strategies are needed for patients with atherosclerosis.Areas covered: …

medicine.medical_specialtyApolipoprotein Bapolipoprotein A-IRVX 208high-density lipoproteinPharmacologyEpigenesis Geneticchemistry.chemical_compoundatherosclerosiHigh-density lipoproteinMetabolic DiseasesInternal medicinemedicineAnimalsHumansPharmacology (medical)QuinazolinonesPharmacologybiologyAnimalCholesterolMedicine (all)Cholesterol HDLReverse cholesterol transportRVX-208QuinazolineGeneral MedicineAtherosclerosisPlaque AtheroscleroticMetabolic DiseaseBromodomainOrally activeEndocrinologyhigh-density lipoprotein particlechemistryQuinazolinesbiology.proteinlipids (amino acids peptides and proteins)HumanLipoproteinExpert Opinion on Investigational Drugs
researchProduct

Abstract 1126: Efficacy of BET bromodomain inhibition in Kras-positive non-small cell lung cancer.

2013

Abstract Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as dependency of Kras-dependent tumors on c-Myc function. Unfortunately, drug-like small-molecule inhibitors of KRAS and c-Myc have yet to be realized. The recent discovery in hematologic malignancies that bromodomain inhibition impairs MYC expression and MYC-dependent transcriptional function prompted the possibility of targeting KRAS-driven NSCLC with a potent, prototypical BET bromodomain inhibitor, J…

Genetically modified mouseCancer Researcheducation.field_of_studybusiness.industryMutantPopulationCancermedicine.diseasemedicine.disease_causerespiratory tract diseasesBromodomainOncologyDownregulation and upregulationImmunologymedicineCancer researchKRASLung cancereducationbusinessneoplasmsCancer Research
researchProduct

Immunotherapy With Human Gamma Delta T Cells—Synergistic Potential of Epigenetic Drugs?

2018

Epigenetics has emerged as one of the fastest growing concepts, adding more than 45 new publications every day, spreading through various fields ( 1). Conrad Waddington coined the term “epigenetics” in 1942; however, a multitude of definitions has been endorsed by different researchers. In essence, Waddington’s definition of “epigenetics” and its redefinition by Holiday is at the heart of cellular function. Hence, it is obvious that epigenetic regulation plays a central role also in the specification, differentiation, and functional plasticity of T lymphocytes ( 2). T-cell fate decision in progenitor cells, functional CD4 T-cell plasticity, CD8 T-cell differentiation, but also T-cell memory…

Checkpoint Inhibitorslcsh:Immunologic diseases. Allergy0301 basic medicineDeltaOpinionmedicine.medical_treatmentImmune checkpoint inhibitorsCell PlasticityImmunologyNatural-killer Group 2 Member DBiologyEpigenesis Genetic03 medical and health sciencesCell Plasticitymedicineddc:6AnimalsHumansgamma delta T cellsImmunology and Allergyddc:610EpigeneticsIntraepithelial Lymphocytesprogrammed death 1DNA methylationnatural-killer group 2 member DProgrammed Death 1articlehistone acetylationGamma Delta T CellsImmunotherapy030104 developmental biologyHistone acetylationDNA methylationCancer researchIntraepithelial lymphocyteBromodomain And Extraterminal DomainBromodomain and ExtraTerminal domainImmunotherapyimmunotherapyProgrammed death 1lcsh:RC581-607checkpoint inhibitorsFrontiers in Immunology
researchProduct

Bromodomain factor 1 (Bdf1) protein interacts with histones

2001

AbstractUsing a yeast two-hybrid assay we detected an interaction between the N-terminal region of histone H4 (amino acids 1–59) and a fragment of the bromodomain factor 1 protein (Bdf1p) (amino acids 304–571) that includes one of the two bromodomains of this protein. No interaction was observed using fragments of histone H4 sequence smaller than the first 59 amino acids. Recombinant Bdf1p (rBdf1p) demonstrates binding affinity for histones H4 and H3 but not H2A and H2B in vitro. Moreover, rBdf1p is able to bind histones H3 and H4 having different degrees of acetylation. Finally, we have not detected histone acetyltransferase activity associated with Bdf1p.

Saccharomyces cerevisiae ProteinsRecombinant Fusion ProteinsBiophysicsBromodomainTwo-hybridBiochemistryFungal ProteinsHistonesHistone H4SaccharomycesAcetyltransferasesGenes ReporterStructural BiologyTwo-Hybrid System TechniquesHistone methylationHistone H2AGeneticsHistone acetyltransferase activityHistone octamerMolecular BiologyHistone AcetyltransferasesBromodomain factor 1 proteinbiologyChemistryCell BiologyHistone acetyltransferasePeptide FragmentsChromatinBromodomainHistoneBiochemistryPCAFbiology.proteinHistone acetyltransferaseProtein BindingTranscription FactorsFEBS Letters
researchProduct

In the literature: June 2018

2018

Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a highly active family of compounds that have changed the scenario in ovarian and human epidermal growth factor receptor 2 (HER2) non-amplified breast cancer management in the recent years. Despite impressive clinical activity, a prolonged treatment with PARPi is frequently associated with acquired resistance to this therapy. The identification of mechanisms and strategies to overcome resistance are crucial. Bromodomain containing 4 (BRD4) is a member of the bromodomain and extraterminal (BET) protein family that facilitates oncogenic transcription. BRD4 is frequently amplified in high-grade serous ovarian cancer (HGSOC) and can be …

Cancer ResearchBRD4ARID1AliteratureRAD51BiologyNewsBromodomainOncologyCancer cellCancer researchbiology.proteinPTENEctopic expression1506PI3K/AKT/mTOR pathwayESMO Open
researchProduct

Efficacy of BET Bromodomain Inhibition in Kras-Mutant Non–Small Cell Lung Cancer

2013

Abstract Purpose: Amplification of MYC is one of the most common genetic alterations in lung cancer, contributing to a myriad of phenotypes associated with growth, invasion, and drug resistance. Murine genetics has established both the centrality of somatic alterations of Kras in lung cancer, as well as the dependency of mutant Kras tumors on MYC function. Unfortunately, drug-like small-molecule inhibitors of KRAS and MYC have yet to be realized. The recent discovery, in hematologic malignancies, that bromodomain and extra-terminal (BET) bromodomain inhibition impairs MYC expression and MYC transcriptional function established the rationale of targeting KRAS-driven non–small cell lung cance…

Cancer ResearchLKB1Lung NeoplasmsMutantApoptosisMYCAMP-Activated Protein KinasesProtein Serine-Threonine KinasesBiologyNSCLCmedicine.disease_causeArticleProto-Oncogene Proteins c-mycProto-Oncogene Proteins p21(ras)MiceRNA interferenceCarcinoma Non-Small-Cell LungCell Line TumorKRASmedicineAnimalsRNA Small InterferingLung cancerneoplasmsCell ProliferationMice KnockoutGene knockdownCell growthNuclear ProteinsCancerAzepinesTriazolesBETmedicine.diseaseMolecular biologydigestive system diseasesrespiratory tract diseasesBromodomainOncologyCancer researchRNA InterferenceKRASSignal TransductionTranscription FactorsClinical Cancer Research
researchProduct