Search results for "C*-algebras"
showing 7 items of 37 documents
CQ*-algebras and noncommutative measure
2012
In this paper we continue the investigations in [4], [5], [8], [13], [14], [15], and [19], of the structure of quasi *-algebras and extend the results in [1] and [2]. Here, noncommutative Tp-spaces are shown to constitute examples of a class of Banach C*-modules called CQ*-algebras. Moreover, it is shown that any (strongly) *-semisimple proper CQ*-algebra (X ,A), with A a separable C*-algebra, can be represented as a CQ*-algebra of type Tp.
Operators in rigged Hilbert spaces: toward a spectral analysis
Locally convex quasi $C^*$-normed algebras
2012
Abstract If A 0 [ ‖ ⋅ ‖ 0 ] is a C ∗ -normed algebra and τ a locally convex topology on A 0 making its multiplication separately continuous, then A 0 ˜ [ τ ] (completion of A 0 [ τ ] ) is a locally convex quasi ∗-algebra over A 0 , but it is not necessarily a locally convex quasi ∗-algebra over the C ∗ -algebra A 0 ˜ [ ‖ ⋅ ‖ 0 ] (completion of A 0 [ ‖ ⋅ ‖ 0 ] ). In this article, stimulated by physical examples, we introduce the notion of a locally convex quasi C ∗ -normed algebra, aiming at the investigation of A 0 ˜ [ τ ] ; in particular, we study its structure, ∗-representation theory and functional calculus.
Quasi *-algebras and generalized inductive limits of C*-algebras
2011
A note on *-derivations of partial *-algebras
2012
A definition of *-derivation of partial *-algebra through a sufficient family of ips-forms is proposed.
Locally convex quasi *-algebras: basic aspects and commutative case
2010
Extensions of representable linear functionals to unitized quasi *-algebras
2013
This paper starts from noting that, under certain conditions, *-representability and extensibility to the unitized *-algebra of a positive linear functional, defined on a *-algebra without unit, are equivalent. Here some conditions for the equivalence of the same concepts for a hermitian linear functional defined on a quasi *-algebra $(\A,\Ao)$ without unit are given. The approach is twofold: on the one hand, conditions for the equivalence are exhibited by introducing a condition for the *- representability of the extension of a *-representable functional to the unitized quasi *-algebra, on the other hand a *-representable extension to the unitization of a hermitian linear functional by mea…