Search results for "CALORIMETERS"
showing 10 items of 29 documents
Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger
2020
The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the newMultichip Modules along with the improvements to the signal processing achieved.
A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test
2010
A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV…
EUDAQ $-$ A Data Acquisition Software Framework for Common Beam Telescopes
2019
EUDAQ is a generic data acquisition software developed for use in conjunction with common beam telescopes at charged particle beam lines. Providing high-precision reference tracks for performance studies of new sensors, beam telescopes are essential for the research and development towards future detectors for high-energy physics. As beam time is a highly limited resource, EUDAQ has been designed with reliability and ease-of-use in mind. It enables flexible integration of different independent devices under test via their specific data acquisition systems into a top-level framework. EUDAQ controls all components globally, handles the data flow centrally and synchronises and records the data…
A microcalorimeter spectrometer for the investigation of laboratory plasmas
2002
We describe a cryostat and 2-stage ADR specifically designed for making measurements at the NIST EBIT (Electron Beam Ion Trap) facility. The design is compact and consists of a single helium bath with two vapor-cooled shields. The 2-stage ADR has two separate magnets and two heat switches. The interface between the EBIT and microcalorimeter array will also be described.
Study of Microcalorimeters for Astrophysics Applications
2008
In the framework of the Italian Space Agency R&D project, which is focused on the development of microcalorimeters for applications on astrophysics, we are studying different methods for TES microcalorimeter production and developing simulations of various absorber performances. In this paper are presented preliminary results obtained with two different geometries: front back and planar on SiN membrane.
Construction, Commissioning and First Results of a Highly Granular Hadron Calorimeter with SiPM-on-Tile Read-out
2018
The CALICE collaboration is developing a highly granular Analogue Hadron sampling CALorimeter (AHCAL) for a future electron-positron collider. Very small detection units are required for the AHCAL due to an optimized design for the Particle Flow Algorithm. This is realized with scintillator tiles each wrapped in reflector foil and individually read out by a silicon photomultiplier (SiPM). These scintillator tiles and SiPMs are assembled on readout boards (HCAL Base Unit, HBU) which are integrated later on in the AHCAL detector stack. With this design a higher energy resolution is achievable, but also a large quantity of components (around 8,000,000 scintillator tiles and SiPMs) are needed t…
Operation of transition-edge sensors with excess thermal noise
2006
The superconducting transition-edge sensor (TES) is currently one of the most attractive choices for ultra-high resolution calorimetry in the keV x-ray band, and is being considered for future ESA and NASA missions. We have performed a study on the noise characteristics of Au/Ti bilayer TESs, at operating temperatures around ~100 mK, with the SQUID readout at 1.5 K. Experimental results indicate that without modifications the back-action noise from the SQUID chip degrades the noise characteristics significantly. We present a simple and effective solution to the problem: by installing an extra shunt resistor which absorbs the excess radiation from the SQUID input, we have reduced the excess …
Performance of the ALICE photon spectrometer PHOS
2003
Abstract We present in this paper the measured characteristics of a 64 lead–tungstate crystal array designed to detect high-energy photons and neutral mesons with the ALICE photon spectrometer PHOS. The array has been tested with electron and charged pion secondary beams delivered by the CERN PS and SPS synchrotrons. Photon energy and π 0 invariant mass resolutions are presented. The PHOS particle identification performance for data simulated with the AliRoot package is studied.
A calorimeter for the precise determination of the activity of the 144Ce-144Pr anti-neutrino source in the SOX experiment
2018
We describe the design and the performance of a high precision thermal calorimeter, whose purpose was the measurement of the total activity of the 144Ce-144Pr anti-neutrino source of the SOX (Short distance neutrino Oscillation with BoreXino) experiment. SOX aimed at the search for eV-scale sterile neutrinos by means of the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy and of a very powerful artificial anti-neutrino source located at 8.51 m from the detector center. In order to obtain the required sensitivity, the activity of the source (approximately 150 kCi) had to be known at 1% precision. In this work we report the design of the experimental apparatus and the res…
Test of x-ray microcalorimeters with bilayer absorbers
2008
Superconducting absorbers for thermal X-ray microcalorimeters should convert into thermalized phonons and transfer to the thermal sensor most of the energy deposited by single photons, on a time scale as short as a few tens of microseconds. Since deposition of X-ray energy in a superconductor produces quasiparticles by breaking up of Cooper pairs, the thermalization efficiency depends on the time scale on which they survive within the absorber volume, trapping part of the absorbed energy. According to the predicted values of their microscopic parameters, in many standard type-I superconducting metals the quasiparticle life time at very low temperatures results too long to allow for recombin…