Search results for "CASP"

showing 10 items of 470 documents

Phytochemical Profile and Apoptotic Activity of Onopordum cynarocephalum.

2012

A phytochemical investigation of acetone and chloroform extracts of the aerial parts of Onopordum cynarocephalum Boiss. et Blanche was carried out. It led to the isolation of two new sesquiterpenes, the elemane aldehyde (2) and the eudesmane (11), together with 15 known compounds: two lignans (1 and 15) and 13 sesquiterpenes (3–10, 12–14, 16, 17). The structures were elucidated by spectroscopic analyses, especially 1D and 2D NMR spectra. The anti-growth effect against three human melanoma cell lines, M14, A375, and A2058, of the different extracts and compounds of O. cynarocephalum was also investigated. Among them, the chloroform extract exhibited the strongest biological activity, while t…

StereochemistryPharmaceutical ScienceApoptosisDNA FragmentationLignansAnalytical Chemistrychemistry.chemical_compoundInhibitory Concentration 50cytotoxic activity Onopordum cynarocephalum Boiss. et BlancheCell Line TumorDrug DiscoveryHumansSesquiterpenes EudesmaneHSP70 Heat-Shock ProteinsFuransArctigeninCell ProliferationPharmacologyLignanChloroformPlants MedicinalbiologyDose-Response Relationship DrugMolecular StructureCaspase 3Plant ExtractsOrganic ChemistryOnopordumPTEN PhosphohydrolaseBiological activityPlant Components AerialAntineoplastic Agents PhytogenicEnzyme assayMonocyclic SesquiterpenesComplementary and alternative medicinePhytochemicalchemistryApoptosisbiology.proteinMolecular MedicineDNA fragmentationSesquiterpenes
researchProduct

Cytotoxicity and modes of action of four naturally occuring benzophenones: 2,2′,5,6′-Tetrahydroxybenzophenone, guttiferone E, isogarcinol and isoxant…

2012

Abstract Introduction The emergence of drug-resistant cancer cells drastically reduces the efficacy of many antineoplasic agents and, consequently, increases the frequency of therapeutic failure. Benzophenones are known to display many pharmacological properties including cytotoxic activities. The present study was aimed at investigating the cytotoxicity and the modes of action of four naturally occurring benzophenones 2,2′,5,6′-tetrahydroxybenzophenone ( 1 ), isogarcinol ( 2 ), isoxanthochymol ( 3 ) and guttiferone E ( 4 ) on a panel of eleven cancer cell lines including various sensitive and drug-resistant phenotypes. Methods The cytotoxicity of the compounds was determined using a resazu…

StereochemistryPharmaceutical ScienceApoptosisHL-60 CellsPharmacologyCaspase 8BenzophenonesInhibitory Concentration 50NeoplasmsDrug DiscoveryHumansCytotoxic T cellCytotoxicityCaspaseCell ProliferationPharmacologyCaspase-9LeukemiabiologyPlant ExtractsChemistryCarcinomaHCT116 CellsAntineoplastic Agents PhytogenicMatrix MetalloproteinasesPhenotypeComplementary and alternative medicineDoxorubicinDrug Resistance NeoplasmApoptosisCell cultureCaspasesColonic NeoplasmsCancer cellbiology.proteinMolecular MedicineReactive Oxygen SpeciesPhytotherapyPhytomedicine
researchProduct

Topotecan triggers apoptosis in p53-deficient cells by forcing degradation of XIAP and survivin thereby activating caspase-3-mediated Bid cleavage.

2009

The topoisomerase I inhibitor topotecan (TPT) is used in the therapy of different tumors including high-grade gliomas. We previously showed that TPT-induced apoptosis depends on p53 with p53 wild-type (wt) cells being more resistant because of p53-controlled degradation of topoisomerase I. Here, we show that p53-deficient (p53(-/-)) fibroblasts undergo excessive mitochondrial apoptosis featuring H2AX phosphorylation, Bcl-x(L) decline, cytochrome c release, caspase-9/-3/-2 activation, and cleavage of Bid. In wt and apaf-1(-/-) cells, caspase-2 did not become activated and Bid was not cleaved. In addition, p53(-/-) cells cotreated with TPT and caspase-3 inhibitor showed neither caspase-2 acti…

SurvivinBlotting WesternDown-RegulationCaspase 3ApoptosisX-Linked Inhibitor of Apoptosis ProteinBiologyTopoisomerase-I InhibitorInhibitor of apoptosisTransfectionInhibitor of Apoptosis ProteinsHistonesMiceCell Line TumorSurvivinAnimalsHumansPhosphorylationRNA Small InterferingPharmacologyMice KnockoutCaspase 3Caspase 2TransfectionFibroblastsFlow CytometryMolecular biologyXIAPMice Inbred C57BLRepressor ProteinsApoptotic Protease-Activating Factor 1ApoptosisCancer researchMolecular MedicineApoptosomeTopoisomerase I InhibitorsTumor Suppressor Protein p53TopotecanMicrotubule-Associated ProteinsBH3 Interacting Domain Death Agonist ProteinThe Journal of pharmacology and experimental therapeutics
researchProduct

Retinoic Acid Induces Apoptosis-Associated Neural Differentiation of a Murine Teratocarcinoma Cell Line

2002

Abstract: Incubation with all-trans retinoic acid (RA) induces PCC7-Mz1 embryonic carcinoma cells to cease proliferation and to develop into a tissue-like pattern of neuronal, astroglial, and fibroblast-like derivatives over a period of several days. Concomitant with the induction of differentiation by RA, a sizable fraction of the Mz1 stem cells detaches and dies, with the maximal level of cell death achieved after 10 h of RA treatment. This RA-induced cell death fulfills all criteria of apoptosis, including nuclear condensation, intranucleosomal DNA degradation, expression of cysteine aspases (caspases), and the formation of apoptotic bodies. Apoptosis could be suppressed by the pan-caspa…

TeratocarcinomaProgrammed cell deathCellular differentiationRetinoic acidApoptosisTretinoinBiochemistryMiceCellular and Molecular Neurosciencechemistry.chemical_compoundGAP-43 ProteinTumor Cells CulturedAnimalsProtein Kinase CProtein kinase CCaspaseNeuronsbiologyCell DifferentiationGenes bcl-2Cell biologyGene Expression RegulationchemistryBiochemistryCell cultureApoptosisPhorbolbiology.proteinJournal of Neurochemistry
researchProduct

Cytotoxic phytochemicals from the crude extract of Tetrapleura tetraptera fruits towards multi-factorial drug resistant cancer cells.

2020

Abstract Ethnopharmacological relevance Tetrapleura tetraptera is an African medicinal spice used in traditional medicine to treat several ailments including cancer. Aim of the study The present study was designed to evaluate the cytotoxicity of the dichloromethane-methanol (1:1) extract of the fruits of Tetrapleura tetraptera (TTF) and its constituents: (3R, 4S)-3,4-dimethyloxetan-2-one (1), luteolin (2), stigmasterol (4), 3-O-[6′-O-undecanoyl-β-D-glucopyranosyl]stigmasterol (6), olean-12-en-3-β-O-D-glucopyranoside (7), 3-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosylurs-12-en-28-oic acid (8), 3-O-β-D-glucopyranosyl-(1 → 3)-β-D-glucopyranosyl-27-hydroxyolean-12-ene-28-oic acid (9), methyl…

Tetrapleura tetrapteraPhytochemicalsApoptosis03 medical and health scienceschemistry.chemical_compoundInhibitory Concentration 500302 clinical medicineBetulinic acidNeoplasmsDrug DiscoveryCytotoxic T cellHumansTetrapleuraCytotoxicity030304 developmental biologyPharmacologychemistry.chemical_classificationMembrane Potential Mitochondrial0303 health sciencesReactive oxygen speciesbiologyDose-Response Relationship DrugPlant ExtractsHep G2 Cellsbiology.organism_classificationHCT116 CellsMolecular biologyAntineoplastic Agents PhytogenicDrug Resistance MultipleMatrix MetalloproteinasesOxidative StresschemistryApoptosisDrug Resistance Neoplasm030220 oncology & carcinogenesisCaspasesFruitCancer cellReactive Oxygen SpeciesLuteolinSignal TransductionJournal of ethnopharmacology
researchProduct

Protective effect of paraoxonase-2 against endoplasmic reticulum stress-induced apoptosis is lost upon disturbance of calcium homoeostasis

2008

PON2 (paraoxonase-2) is a ubiquitously expressed antioxidative protein which is largely found in the ER (endoplasmic reticulum). Addressing the cytoprotective functions of PON2, we observed that PON2 overexpression provided significant resistance to ER-stress-induced caspase 3 activation when the ER stress was induced by interference with protein modification (by tunicamycin or dithiothreitol), but not when ER stress was induced by disturbance of Ca2+ homoeostasis (by thapsigargin or A23187). When analysing the underlying molecular events, we found an activation of the PON2 promoter in response to all tested ER-stress-inducing stimuli. However, only tunicamycin and dithiothreitol resulted i…

ThapsigarginRNA StabilityApoptosisCaspase 3Protein degradationEndoplasmic ReticulumBiochemistryGene Expression Regulation EnzymologicCell Linechemistry.chemical_compoundStress PhysiologicalHomeostasisHumansEnzyme InhibitorsPromoter Regions Genetic3' Untranslated RegionsMolecular BiologyCalcimycinIonophoresbiologyAryldialkylphosphataseCalpainTunicamycinEndoplasmic reticulumCalpainCell BiologyTunicamycinCell biologyDithiothreitolchemistryApoptosisbiology.proteinUnfolded protein responseThapsigarginCalcium5' Untranslated RegionsBiochemical Journal
researchProduct

Aβ Oligomers and Fibrillar Aggregates Induce Different Apoptotic Pathways in LAN5 Neuroblastoma Cell Cultures

2009

Fibril deposit formation of amyloid beta-protein (Abeta) in the brain is a hallmark of Alzheimer's disease (AD). Increasing evidence suggests that toxicity is linked to diffusible Abeta oligomers, which have been found in soluble brain extracts of AD patients, rather than to insoluble fibers. Here we report a study of the toxicity of two distinct forms of recombinant Abeta small oligomers and fibrillar aggregates to simulate the action of diffusible Abeta oligomers and amyloid plaques on neuronal cells. Different techniques, including dynamic light scattering, fluorescence, and scanning electron microscopy, have been used to characterize the two forms of Abeta. Under similar conditions and …

Time FactorsAmyloidCell SurvivalBiophysicsApoptosisBiologyFibrilCaspase 8Substrate SpecificityNeuroblastomaCytosolCell Line TumormedicineHumansEnzyme InhibitorsProtein Structure QuaternaryCaspase-9Amyloid beta-PeptidesDose-Response Relationship DrugProteinCytochrome cNeurodegenerationCytochromes cHydrogen-Ion Concentrationmedicine.diseaseCaspase InhibitorsPeptide FragmentsCell biologyProtein TransportCytosolApoptosisMicroscopy Electron Scanningbiology.proteinProtein MultimerizationProtein BindingSignal TransductionBiophysical Journal
researchProduct

Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage.

2011

BACKGROUND: Tight-junction (TJ) protein degradation is a decisive step in hypoxic blood-brain barrier (BBB) breakdown in stroke. In this study we elucidated the impact of acute cerebral ischemia on TJ protein arrangement and the role of the apoptotic effector protease caspase-3 in this context. METHODOLOGY/PRINCIPAL FINDINGS: We used an in vitro model of the neurovascular unit and the guinea pig whole brain preparation to analyze with immunohistochemical methods the BBB properties and neurovascular integrity. In both methodological approaches we observed rapid TJ protein disruptions after 30 min of oxygen and glucose deprivation or middle cerebral artery occlusion, which were accompanied by…

Time FactorsAnatomy and Physiologylcsh:MedicineMiceMolecular Cell BiologyPathologySignaling in Cellular ProcessesHypoxia Brainlcsh:ScienceCells CulturedNeuropathologyApoptotic SignalingMultidisciplinaryTight junctionCaspase 3ChemistryAnimal ModelsCell biologyTransport proteinProtein Transportmedicine.anatomical_structureNeurologyBlood-Brain BarrierMedicineResearch ArticleSignal TransductionClinical Research DesignCerebrovascular DiseasesGuinea PigsIschemiaContext (language use)Caspase 3Protein degradationBlood–brain barrierNeurological SystemTight JunctionsCapillary PermeabilityModel OrganismsDiagnostic MedicinemedicineAnimalsTransient Ischemic AttacksAnimal Models of DiseaseClaudinBiologyIschemic Strokelcsh:REndothelial CellsMembrane ProteinsPhosphoproteinsmedicine.diseaseAnatomical PathologyClaudinsImmunologyZonula Occludens-1 ProteinNervous System Componentslcsh:QPLoS ONE
researchProduct

pRb suppresses camptothecin-induced apoptosis in human osteosarcoma Saos-2 cells by inhibiting c-Jun N-terminal kinase

2001

AbstractThis paper studies the cytotoxic effect induced by the topoisomerase I inhibitor camptothecin in human osteosarcoma Saos-2 cells, which lack p53 and contain a non-functional form of the product of the retinoblastoma gene, pRb. Cytotoxicity induced by camptothecin was dose- and time-dependent; the treatment with 100 nM camptothecin reduced cell viability by 50% at 32 h and by 75% at 72 h of exposure. The cytotoxic effect was caused by apoptosis, as ascertained by morphological evidence, acridine orange-ethidium bromide staining and flow cytometric analysis. Apoptosis was accompanied by both the activation of caspase-3 and the fragmentation of poly(ADP-ribose) polymerase. Treatment wi…

Time FactorsCell SurvivalProto-Oncogene Proteins c-junBlotting WesternBiophysicsApoptosisBiologyTransfectionRetinoblastoma ProteinBiochemistryStructural BiologyTumor Cells CulturedpRb JNK topoisomerase I inhibitors osteosarcomaGeneticsmedicineHumansCytotoxic T cellViability assayPhosphorylationFragmentation (cell biology)neoplasmsMolecular BiologySaos-2 cellsc-Jun N-terminal kinaseCell SizeDose-Response Relationship DrugCaspase 3Cell growthCell Cyclec-junJNK Mitogen-Activated Protein KinasesHydrogen PeroxideCell BiologyFlow CytometryGlutathioneMolecular biologyEnzyme ActivationOxidative StresspRbDNA Topoisomerases Type IApoptosisCaspasesCamptothecinMitogen-Activated Protein KinasesPoly(ADP-ribose) PolymerasesTopoisomerase I InhibitorsCamptothecinmedicine.drugFEBS Letters
researchProduct

Triclosan induces Fas receptor-dependent apoptosis in mouse neocortical neurons in vitro

2014

Triclosan (TCS) is a commonly used antimicrobial agent in personal care and sanitizing products, as well as in household items. Numerous studies have demonstrated the presence of TCS in various human tissues. Several studies have reported the accumulation of TCS in fish and human brain tissue. The aim of the present study was to investigate the effect of TCS on apoptosis in mouse neocortical neurons after 7 days of culture in vitro following 3, 6 and 24 h of exposure. To explore the mechanism underlying the effects of TCS in neurons, we studied the activation and protein expression of the Fas receptor (FasR) and caspase- 8, caspase-9 and caspase-3, as well as DNA fragmentation in TCS-treate…

Time FactorsExtrinsic apoptotic signaling pathwayApoptosisNeocortexDNA fragmentation.DNA FragmentationCaspase 8caspase-8FasRMicePregnancyAnimalsfas ReceptorFADDEnzyme InhibitorsCells CulturedNeuronsDose-Response Relationship DrugL-Lactate DehydrogenasebiologyGeneral NeurosciencefungiEmbryo MammalianStaurosporineFas receptorApoptotic bodyTriclosanIn vitroCell biologyBiochemistryApoptosisCaspasesbiology.proteinFatty Acid Synthesis InhibitorsDNA fragmentationFemaleNeuroscience
researchProduct