Search results for "CCA"
showing 10 items of 2226 documents
Flexible integration of robotics, ultrasonics and metrology for the inspection of aerospace components
2016
The performance of modern robotic manipulators has allowed research in recent years, for the development of fast automated non-destructive testing (NDT) of complex geometries. Contemporary robots are well suited for their accuracy and flexibility when adapting to new tasks. Several robotic inspection prototype systems and a number of commercial products have been created around the world. This paper describes the latest progress of a new phase of the research applied to a composite aerospace component of size 1 by 3 metres. A multi robot flexible inspection cell was used to take the fundamental research and the feasibility studies to higher technology readiness levels, all set for future in…
Industry 4.0 Technologies for Manufacturing Sustainability: A Systematic Review and Future Research Directions
2021
Recent developments in manufacturing processes and automation have led to the new industrial revolution termed “Industry 4.0”. Industry 4.0 can be considered as a broad domain which includes: data management, manufacturing competitiveness, production processes and efficiency. The term Industry 4.0 includes a variety of key enabling technologies i.e., cyber physical systems, Internet of Things, artificial intelligence, big data analytics and digital twins which can be considered as the major contributors to automated and digital manufacturing environments. Sustainability can be considered as the core of business strategy which is highlighted in the United Nations (UN) Sustainability 2030 age…
Industry 4.0: smart test bench for shipbuilding industry
2020
AbstractIndustry 4.0 promises to increase the efficiency of production plants and the quality of the final product. Consequently, companies that implement advanced solutions in production systems will have a competitive advantage in the future. The principles of Industry 4.0 can also be applied to shipyards to transform them into “smart shipyards” (Shipyard 4.0). The aim of this research is to implement an interactive approach by Internet of Things on a closed power-loop test bench equipped with sophisticated sensors that is specifically designed to test high-power thrusters before they are installed on high-speed crafts, which are used in passenger transport. The preliminary results of the…
Automatic Take Off and Landing for UAS Flying in Turbulent Air - An EKF Based Procedure
2020
An innovative use of the Extended Kalman Filter (EKF) is proposed to perform automatic take off and landing by the rejection of disturbances due to turbulence. By using two simultaneously working Extended Kalman Filters, a procedure is implemented: the first filter, by using measurements gathered in turbulent air, estimates wind components; the second one, by using the estimated disturbances, obtains command laws that are able to reject disturbances. The fundamental innovation of such a procedure consists in the fact that the covariance matrices of process (Q) and measurement (R) noise are not treated as filter design parameters. In this way determined optimal values of the aforementioned m…
Power losses in power-split CVTs: A fast black-box approximate method
2018
Abstract This paper addresses the mechanical losses of planetary transmissions, with particular attention to power-split CVTs in their hybrid electric versions. It provides unified layout-independent analytical relationships, which can be used for both analysis, design and control purposes, and a simplified approach; the latter overcomes the necessity to segment the operating range of the power-split CVT in order to keep its loss model physically consistent. An example of application to a real hybrid electric PS-CVT is performed to show the simplicity, accuracy and generality of the proposed method.
Ultrasonic phased array inspection of a Wire + Arc Additive Manufactured (WAAM) sample with intentionally embedded defects
2019
In this study, Wire + Arc Additive Manufacture (WAAM) was employed to manufacture a steel specimen with intentionally embedded defects which were subsequently used for calibration of an ultrasonic phased array system and defect sizing. An ABB robot was combined with the Cold Metal Transfer (CMT) Gas Metal Arc (GMA) process to deposit 20 layers of mild steel. Tungsten-carbide balls (ø1-3 mm) were intentionally embedded inside the additive structure after the 4th, 8th, 12th and 18th layers to serve as ultrasonic reflectors, simulating defects within the WAAM sample. An ultrasonic phased array system, consisting of a 5 MHz 64 Element phased array transducer, was used to inspect the WAAM sample…
Regenerative scheduling problem in engineer to order manufacturing: an economic assessment
2021
The dynamic production scheduling is a very complex process that may arise from the occurrence of unpredictable situations such as the arrival of new orders besides the ones already accepted. As a consequence, companies may often encounter several difficulties to make decisions about the new orders acceptance and sequencing along with the production of the existing ones. With this recognition, a mathematical programming model for the regenerative scheduling problem with deterministic processing times is formulated in the present paper to evaluate the economic advantage of accepting a new order in an engineer to order (ETO) manufacturing organization. The real case of an Italian ETO company …
A novel clustering-based algorithm for solving spatially-constrained robotic task sequencing problems
2021
The robotic task sequencing problem (RTSP) appears in various forms across many industrial applications and consists of developing an optimal sequence of motions to visit a set of target points defined in a task space. Developing solutions to problems involving complex spatial constraints remains challenging due to the existence of multiple inverse kinematic solutions and the requirements for collision avoidance. So far existing studies have been limited to relaxed RTSPs involving a small number of target points and relatively uncluttered environments. When extending existing methods to problems involving greater spatial constraints and large sets of target points, they either require subst…
Robotic geometric and volumetric inspection of high value and large scale aircraft wings
2019
Increased demands in performance and production rates require a radical new approach to the design and manufacturing of aircraft wings. Performance of modern robotic manipulators has enabled research and development of fast automated non-destructive testing (NDT) systems for complex geometries. This paper presents recent outcomes of work aimed at removing the bottleneck due to data acquisition rates, to fully exploit the scanning speed of modern 6-DoF manipulators. The geometric assessment of the parts is carried out with a robotised dynamic laser scanner encoded through an absolute laser tracker. This method allows scanning speeds up to 330mm/s at 1mm pitch. State of the art ultrasonic ins…
Wind component estimation for UAS flying in turbulent air
2019
One of the most important problem of autonomous flight for UAS is the wind identification, especially for small scale vehicles. This research focusses on an identification methodology based on the Extended Kalman Filter (EKF). In particular authors focus their attention on.the filter tuning problem. The proposed procedure requires low computational power, so it is very useful for UAS. Besides it allows a robust wind component identification even when, as it is usually, the measurement data set is affected by noticeable noises. (C) 2019 Elsevier Masson SAS. All rights reserved.