Search results for "CCR"

showing 10 items of 574 documents

On the observability of T Tauri accretion shocks in the X-ray band

2010

Context. High resolution X-ray observations of classical T Tauri stars (CTTSs) show a soft X-ray excess due to high density plasma (n_e=10^11-10^13 cm^-3). This emission has been attributed to shock-heated accreting material impacting onto the stellar surface. Aims. We investigate the observability of the shock-heated accreting material in the X-ray band as a function of the accretion stream properties (velocity, density, and metal abundance) in the case of plasma-beta<<1 in the post-shock zone. Methods. We use a 1-D hydrodynamic model describing the impact of an accretion stream onto the chromosphere, including the effects of radiative cooling, gravity and thermal conduction. We expl…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsRadiative coolingAstrophysics::High Energy Astrophysical Phenomenaaccretion accretion disks hydrodynamics shock waves stars: pre-main sequence X-rays: starsFOS: Physical sciencesAstronomy and AstrophysicsObservableAstrophysics::Cosmology and Extragalactic AstrophysicsPlasmaAstrophysicsThermal conductionAccretion (astrophysics)T Tauri starSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceThermalAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomy & Astrophysics
researchProduct

Striped Blandford/Znajek jets from advection of small-scale magnetic field

2020

Black hole - accretion disc systems are the central engines of relativistic jets from stellar to galactic scales. We numerically quantify the unsteady outgoing Poynting flux through the horizon of a rapidly spinning black hole endowed with a rotating accretion disc. The disc supports small-scale, concentric, flux tubes with zero net magnetic flux. Our General Relativistic force-free electrodynamics simulations follow the accretion onto the black hole over several hundred dynamical timescales in 3D. For the case of counter-rotating accretion discs, the average process efficiency reaches up to $\left\langle\epsilon\right\rangle\approx 0.43$, compared to a stationary energy extraction by the B…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeField lineAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMagnetic fluxAccretion (astrophysics)Magnetic fieldBlack holeAstrophysical jetSpace and Planetary SciencePoynting vectorAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaMonthly Notices of the Royal Astronomical Society
researchProduct

X-ray spectroscopy of MXB 1728-34 with XMM-Newton

2011

We have analysed an XMM-Newton observation of the low mass X-ray binary and atoll source MXB 1728-34. The source was in a low luminosity state during the XMM-Newton observation, corresponding to a bolometric X-ray luminosity of 5*10E36 d^2 erg/s, where d is the distance in units of 5.1 kpc. The 1-11 keV X-ray spectrum of the source, obtained combining data from all the five instruments on-board XMM-Newton, is well fitted by a Comptonized continuum. Evident residuals are present at 6-7 keV which are ascribed to the presence of a broad iron emission line. This feature can be equally well fitted by a relativistically smeared line or by a self-consistent, relativistically smeared, reflection mo…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsX-ray spectroscopy010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaBolometerFOS: Physical sciencesBinary numberAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsformation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general [line]01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E AstrofisicaAccretion discSpace and Planetary Sciencelaw0103 physical sciencesEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsline: formation line: identification stars: neutron stars: individual: MXB 1728 34 X-rays: binaries X-rays: general
researchProduct

The jets and disc of SS 433 at super-Eddington luminosities

2009

We examine the jets and the disc of SS 433 at super-Eddington luminosities with 600 times Eddington critical accretion rate by time-dependent two-dimensional radiation hydrodynamical calculations, assuming alpha-model for the viscosity. One-dimensional supercritical accretion disc models with mass loss or advection are used as the initial configurations of the disc. As a result, from the initial advective disc models with alpha =0.001 and 0.1, we obtain the total luminosities 2.5x10^{40} and 2.0x10^{40} erg/s. The total mass-outflow rates are 4x10^{-5} and 10^{-4} solar-mass/yr and the rates of the relativistic axial outflows in a small half opening angle of 1 degree are about 10^{-6} solar…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsaccretion accretion discs black hole physics hydrodynamics radiation mechanisms: thermal X-rays: individual: SS 433Jet (fluid)Plane (geometry)AdvectionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsRadiationLuminosityViscositySettore FIS/05 - Astronomia E AstrofisicaAmplitudeSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicsOutflowAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

2014

When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different co…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsaccretion accretion discs line: identification stars: neutron X-rays: binaries X-rays: galaxies X-rays: individual: (GX 13+1)Spectral shape analysisAccretion (meteorology)Absorption spectroscopyAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesSpectral lineNeutron starAmplitudeidentification stars: neutron X-rays: binaries X-rays: galaxies X-rays: individual: (GX 13+1) [accretion accretion discs line]Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Emission spectrumAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

The spin and orbit of the newly discovered pulsar IGR J17480-2446

2011

We present an analysis of the spin and orbital properties of the newly discovered accreting pulsar IGR J17480-2446, located in the globular cluster Terzan 5. Considering the pulses detected by the Rossi X-ray Timing Explorer at a period of 90.539645(2) ms, we derive a solution for the 21.27454(8) hr binary system. The binary mass function is estimated to be 0.021275(5) Msun, indicating a companion star with a mass larger than 0.4 Msun. The X-ray pulsar spins up while accreting at a rate of between 1.2 and 1.7E-12 Hz/s, in agreement with the accretion of disc matter angular momentum given the observed luminosity. We also report the detection of pulsations at the spin period of the source dur…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studyAngular momentumAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars neutron stars rotation X-rays binaries pulsars individual IGR J17480-2446Accretion (astrophysics)LuminosityNeutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceGlobular clusterAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaeducationAstrophysics::Galaxy Astrophysics
researchProduct

The pulse profile and spin evolution of the accreting pulsar in Terzan 5, IGR J17480-2446, during its 2010 outburst

2012

(abridged) We analyse the spectral and pulse properties of the 11 Hz transient accreting pulsar, IGR J17480-2446, in the globular cluster Terzan 5, considering all the available RXTE, Swift and INTEGRAL observations performed between October and November, 2010. By measuring the pulse phase evolution we conclude that the NS spun up at an average rate of =1.48(2)E-12 Hz/s, compatible with the accretion of the Keplerian angular momentum of matter at the inner disc boundary. Similar to other accreting pulsars, the stability of the pulse phases determined by using the second harmonic component is higher than that of the phases based on the fundamental frequency. Under the assumption that the sec…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical Phenomenaneutron pulsars: individual: IGR J17480-2446 X-rays: binaries [accretion accretion discs stars]FOS: Physical sciencesAstrophysics::Solar and Stellar Astrophysicsaccretion accretion discs stars: neutron pulsars: individual: IGR J17480-2446 X-rays: binariesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Timing Analysis of the 2022 Outburst of the Accreting Millisecond X-Ray Pulsar SAX J1808.4-3658: Hints of an Orbital Shrinking

2022

We present a pulse timing analysis of NICER observations of the accreting millisecond X-ray pulsar SAX J1808.4$-$3658 during the outburst that started on 2022 August 19. Similar to previous outbursts, after decaying from a peak luminosity of $\simeq 1\times10^{36} \, \mathrm{erg \, s^{-1}}$ in about a week, the pulsar entered in a $\sim 1$ month-long reflaring stage. Comparison of the average pulsar spin frequency during the outburst with those previously measured confirmed the long-term spin derivative of $\dot{\nu}_{\textrm{SD}}=-(1.15\pm0.06)\times 10^{-15} \, \mathrm{Hz\,s^{-1}}$, compatible with the spin-down torque of a $\approx 10^{26} \, \mathrm{G \, cm^3}$ rotating magnetic dipole.…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceFOS: Physical sciencesMillisecond pulsarAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaStellar accretion diskNeutron starsThe Astrophysical Journal Letters
researchProduct

A transient ultraluminous X-ray source in NGC 55

2022

Ultraluminous X-ray sources (ULXs) are a class of accreting compact objects with X-ray luminosities above 10$^{39}$ erg s$^{-1}$. The average number of ULXs per galaxy is still not well constrained, especially given the uncertainty on the fraction of ULX transients. Here, we report the identification of a new transient ULX in the galaxy NGC 55 (which we label as ULX-2), thanks to recent XMM-Newton and the Neil Gehrels Swift Observatory observations. This object was previously classified as a transient X-ray source with a luminosity around a few 10$^{38}$ erg s$^{-1}$ in a 2010 XMM-Newton observation. Thanks to new and deeper observations ($\sim$ 130 ks each), we show that the source reaches…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaaccretionSpace and Planetary Scienceaccretion discFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: binarieX-rays: individual: XMMU J001446.81-391123.48
researchProduct

Periodic massloss from viscous accretion flows around black holes

2014

We investigate the behaviour of low angular momentum viscous accretion flows around black holes using Smooth Particle Hydrodynamics (SPH) method. Earlier, it has been observed that in a significant part of the energy and angular momentum parameter space, rotating transonic accretion flow undergoes shock transition before entering in to the black hole and a part of the post-shock matter is ejected as bipolar outflows, which are supposed to be the precursor of relativistic jets. In this work, we simulate accretion flows having injection parameters from the inviscid shock parameter space, and study the response of viscosity on them. With the increase of viscosity, shock becomes time dependent …

High Energy Astrophysical Phenomena (astro-ph.HE)Shock wavePhysicsAngular momentumShock (fluid dynamics)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsMechanicsAccretion (astrophysics)Physics::Fluid DynamicsSmoothed-particle hydrodynamicsViscosityAstrophysical jetSpace and Planetary ScienceInviscid flowAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct