Search results for "CCR"

showing 10 items of 574 documents

Timing of the accreting millisecond pulsar IGR J17591-2342: evidence of spin-down during accretion

2020

We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591-2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 17. We obtain an updated orbital solution of the binary system. We investigate the evolution of the neutron star spin frequency during the outburst, reporting a refined estimate of the spin frequency and the first estimate of the spin frequency derivative ($\dot{\nu} \sim -7\times 10^{-14}$ Hz s$^{-1}$), confirmed independently from the modelling of the fundamental frequency and its first harmonic. We further investigate the evolution of the X-ra…

AccretionIGR J17591-2342Astrophysics::High Energy Astrophysical PhenomenaMagnetosphereFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesaccretion accretion disc stars: neutron X-rays: binaries010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsAstronomy and Astrophysicsneutron [Stars]Accretion (astrophysics)Magnetic fieldNeutron starAmplitudeSpace and Planetary Sciencebinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAccretion discAstrophysics - High Energy Astrophysical Phenomena
researchProduct

First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon

2021

Full list of authors: Akiyama, Kazunori; Algaba, Juan Carlos; Alberdi, Antxon; Alef, Walter; Anantua, Richard; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barrett, John; Benson, Bradford A.; Bintley, Dan; Blackburn, Lindy; Blundell, Raymond; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Boyce, Hope Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broderick, Avery E.; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chan, Chi-kwan; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Chesler, Paul M.; Cho, Ilje; Christian, Pierre; Conway, John E.…

AccretionKinoAstrophysics - astrophysics of galaxiesAstrophysics::High Energy Astrophysical PhenomenaAstronomy19641347FOS: Physical sciences479Astrophysics::Cosmology and Extragalactic AstrophysicsF500870126101 natural sciences7. Clean energyAstrophysics - high energy astrophysical phenomena994MagnetohydrodynamicsRelativistic jets 14 162 479 870 886 994 1964 1261 1278 1335 1347 13900103 physical sciencesJetsPolarimetryRadiative transferPlasma astrophysicsRadio jets010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics162High Energy Astrophysical Phenomena (astro-ph.HE)Physics1278Event horizons1335010308 nuclear & particles physicsBlack holesChatterjee14886Astronomy and AstrophysicsCreative commons139013. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Magnetic fieldsKerr black holesFish <Actinopterygii>Relativistic jetsHumanities
researchProduct

X-shooter spectroscopy of young stars with disks. The TW Hydrae association as a probe of the final stages of disk accretion

2019

We investigate ongoing accretion activity in young stars in the TW Hydrae association (TWA, ~8-10 Myr), an ideal target to probe the final stages of disk accretion down to brown dwarf masses. Our sample comprises eleven TWA members with infrared excess, amounting to 85% of the total TWA population with disks, with spectral types between M0 and M9, and masses between 0.58 and 0.02 Msol. We employed homogeneous spectroscopic data from 300 to 2500 nm, obtained with X-shooter, to derive individual extinction, stellar parameters, and accretion parameters simultaneously. We then examined Balmer lines and forbidden emission lines to probe the physics of the star-disk interaction environment. We de…

AccretionOpen clusters and associations: individual: TWA010504 meteorology & atmospheric sciencesBrown dwarfFOS: Physical sciencesTechniques: spectroscopicAstrophysicsProtoplanetary diskStellar classification01 natural sciencesspectroscopic [Techniques]symbols.namesakeSettore FIS/05 - Astronomia E Astrofisicalow-mass [Stars]pre-main sequence [Stars]0103 physical sciencesStars: low-maTW HydraeQB Astronomy010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesQBEarth and Planetary Astrophysics (astro-ph.EP)PhysicsInfrared excessBalmer seriesAstronomy and AstrophysicsDASAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)StarsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAccretion diskAstrophysics of Galaxies (astro-ph.GA)Accretion diskssymbolsStars: pre-main sequenceindividual: TWA [Open clusters and associations]Astrophysics - Earth and Planetary Astrophysics
researchProduct

A Hard X-Ray View of Scorpius X-1 with INTEGRAL : Nonthermal Emission?

2006

We present here simultaneous INTEGRAL/RXTE observations of Sco X-1, and in particular a study of the hard X-ray emission of the source and its correlation with the position in the Z-track of the X-ray color-color diagram. We find that the hard X-ray (above about 30 keV) emission of Sco X-1 is dominated by a power-law component with a photon index of ~3. The flux in the power-law component slightly decreases when the source moves in the color-color diagram in the sense of increasing inferred mass accretion rate from the horizontal branch to the normal branch/flaring branch vertex. It becomes not significantly detectable in the flaring branch, where its flux has decreased by about an order of…

AccretionPhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysicsAstrophysics01 natural sciencesneutron starsX-ray[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Position (vector)Accretion DisksStars: Neutron0103 physical sciencesX-Rays: StarsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)DiagramAstronomy and AstrophysicsSense (electronics)Horizontal branchX-Rays: BinariesX-Rays: GeneralSpace and Planetary ScienceVertex (curve)accreting millisecondStars: Individual: Constellation Name: Scorpius X-1Order of magnitudeThe Astrophysical Journal
researchProduct

INTEGRAL observations of the peculiar BeX System SAX J2103.5+4545

2004

We present an INTEGRAL data analysis of the X-ray transient \object{SAX J2103.5+4545} during two outbursts detected in December 2002. The INTEGRAL coordinates and error circle agree with the position of the recently proposed optical counterpart. A power-law plus cut-off model provided a good fit to the 4-150 keV spectrum yielding a photon index of 1.0+-0.1, a cut-off energy E_cut=7.6+-2.0 keV and a folding energy E_fold=30.9+-2.5 keV. The X-ray luminosity in the 4-150 keV energy range was found to be 6.0x10^36 erg/s, assuming a distance of 6.5 kpc. This luminosity, together with the derived photon index, indicate that the source is in a bright state. A 354.9$+-0.5 second pulse period is mea…

AccretionPhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesValue (computer science)AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsLuminosityPulse periodPosition (vector)X-raysBright statePhysicsRange (particle radiation)Astrophysics (astro-ph)BinariesSAX J2103.5+4545 [Pulsars]BeAstronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Space and Planetary ScienceAccretion disksUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaEmission-lineAccretion ; Accretion disks ; Binaries ; Emission-line ; Be ; Pulsars : SAX J2103.5+4545 ; X-rays ; Binaries:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Energy (signal processing)Astronomy &amp; Astrophysics
researchProduct

UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars

2016

According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. Th…

AccretionPlasmaSettore FIS/05 - Astronomia E AstrofisicaAccretion accretion disks Stars: pre-main sequence Stars: variables: T Tauri Herbig Ae/BeT Tauri StarsdiskMagnetohydrodinamicMHD simulation
researchProduct

Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

2017

High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift…

AccretionTechniques: spectroscopicFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesTW HydraeX-rays: starEmission spectrumSpectroscopy010303 astronomy & astrophysicsStars: variables: T TauriSolar and Stellar Astrophysics (astro-ph.SR)PhysicsPhotosphereLine-of-sight010308 nuclear & particles physicsHerbig Ae/BeAstronomy and AstrophysicsAstronomy and AstrophysicRedshiftAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsAccretion diskSpace and Planetary ScienceStars: pre-main sequence
researchProduct

Broadband X-ray spectral variability of the pulsing ULX NGC 1313 X-2

2021

[Context] It is thought that ultraluminous X-ray sources (ULXs) are mainly powered by super-Eddington accreting neutron stars or black holes as shown by the recent discovery of X-ray pulsations and relativistic winds. [Aims] This work presents a follow-up study of the spectral evolution over two decades of the pulsing ULX NGC 1313 X-2 in order to understand the structure of the accretion disc. The primary objective is to determine the shape and nature of the dominant spectral components by investigating their variability with the changes in the source luminosity. [Methods[ We performed a spectral analysis over the canonical 0.3-10.0 keV energy band of all the high signal-to-noise XMM-Newton…

AccretionULXsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)Astrophysicsindividuals: NGC 1313 X-2 [X-rays]Astrophysics::Cosmology and Extragalactic AstrophysicsSpectral lineSettore FIS/05 - Astronomia E AstrofisicaX-rays: Individuals: NGC 1313 X-2ThermalCutoffAstrophysics::Solar and Stellar AstrophysicsBlack-body radiationX-rays: BinariesAstrophysics::Galaxy AstrophysicsPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)Astronomy and AstrophysicsRadiusAccretion accretion disksNeutron starSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: individuals:NGC 1313 X-2
researchProduct

TW Hydrae association with X-shooter

2019

Measurements of the protoplanetary disk frequency in young star clusters of different ages indicate disk lifetimes <10Myr. However, our current knowledge of how mass accretion in young stars evolves over the lifespans of disks is subject to many uncertainties, especially at the lower stellar masses. In this study, we investigate ongoing accretion activity in the TW Hydrae association (TWA), the closest association of pre-main sequence stars with active disks. The age (8-10Myr) and the proximity of the TWA render it an ideal target to probe the final stages of disk accretion down to brown dwarf masses. The study is based on homogeneous spectroscopic data from 300nm to 2500nm, obtained synopt…

AccretionUltraviolet astronomyAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyobservational astronomyPre main sequence starsM starsInfrared astronomyAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsPre-main sequence starsAstrophysical ProcessesNatural SciencesAstrophysics::Galaxy AstrophysicsSpectroscopy
researchProduct

IGR J17503–2636: a candidate supergiant fast X-ray transient

2019

IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. We report in this paper the analysis and results obtained from all these X-ray data. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5-80 keV energy range, and the reported association with a highly reddened OB supergiant at ~10 kpc, we conclude that IGR J17503-2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed …

AccretionX-ray transientAstrophysics::High Energy Astrophysical PhenomenaCyclotronFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionbinaries [x-rays]X-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaMethods: observationalBinaries: closelaw0103 physical sciencesSpectral analysis010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)individuals: IGR J17503-2636 [X-rays]010308 nuclear & particles physicsScatteringAstronomy and AstrophysicsStars: neutronAccretion (astrophysics)Neutron starAccretion diskSpace and Planetary ScienceSpectral energy distributionSupergiantAstrophysics - High Energy Astrophysical PhenomenaAstronomy &amp; Astrophysics
researchProduct