Search results for "CFD analysi"

showing 10 items of 28 documents

STUDIO E VALIDAZIONE DI SISTEMI PER L’IDENTIFICAZIONE E IL MONITORAGGIO DI PARAMETRI BIOMEDICI ATTI ALLA PREVENZIONE DI EVENTI INDESIDERATI E ALL’ASS…

L’aumento delle patologie cronico-degenerative nella popolazione mondiale ha comportato un numero sempre maggiore di individui richiedenti assistenza sanitaria, generando, nell’ambito delle realtà ospedaliere, diverse problematiche relative al miglioramento della qualità di vita dei pazienti, ai costi e alla gestione di un numero sempre crescente di soggetti ammalati. Il trattamento sanitario e la ricerca di base si sono pertanto orientati verso la prevenzione delle condizioni che predispongono i soggetti ai peggioramenti clinici e ai ricoveri ospedalieri, puntando sia su nuovi sistemi indossabili di monitoraggio per individuare precocemente i segni di peggioramento, sia su sistemi che poss…

LVADs gastrointestinal bleeding CFD analysis wearable sensors PPG blood pressureLVADs sanguinamento gastrointestinale analisi computazionale sensori indossabiili PPG pressione sanguigna
researchProduct

On the thermal-hydraulic performances of the DEMO divertor cassette body cooling circuit equipped with a liner

2020

Abstract In the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the steady-state thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been focussed onto the most recent design of the Cassette Body (CB) cooling circuit, consistent with the DEMO baseline 2017 and equipped with a liner, whose main function is to protect the underlying vacuum pump CB opening from plasma radiation. The research campaign has been carried out following a theoretical-computational approach based on the finite vo…

Materials scienceNuclear engineeringComputational fluid dynamics01 natural sciences010305 fluids & plasmaslaw.inventionThermal hydraulicsDivertorlaw0103 physical sciencesWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFinite volume methodThermofluid-dynamicsCassette bodybusiness.industryMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringVacuum pumpbusinessCFD analysisFusion Engineering and Design
researchProduct

Thermal-hydraulic study of the DEMO divertor cassette body cooling circuit equipped with a liner and two reflector plates

2021

Abstract In the framework of the Work Package DIV 1 – “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the steady-state thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been focussed onto the most recent design of the Cassette Body (CB) cooling circuit, consistent with the DEMO baseline 2017 and equipped with a liner and two Reflector Plates (RPs), whose main functions are to protect the underlying vacuum pump hole from the radiation arising from plasma and shield the PFCs inlet distributors, respectively. The research ca…

Materials scienceNuclear engineeringComputational fluid dynamics7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionThermal hydraulicsDivertorlawShield0103 physical sciencesWater coolingGeneral Materials Science010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCassette bodybusiness.industryMechanical EngineeringDivertorCassette body CFD analysis DEMO Divertor Thermofluid-dynamicsCoolantNuclear Energy and EngineeringFlow velocityVacuum pumpbusinessCFD analysis
researchProduct

Thermal-hydraulic optimisation of the DEMO divertor cassette body cooling circuit equipped with a liner

2019

Abstract Within the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been focused onto the most recent design of the Cassette Body (CB) cooling circuit equipped with a Liner, whose main function is to protect the underlying vacuum pump hole from the radiation arising from the plasma. The research campaign has been carried out following a theoretical-computational approach based on the Finite Volume Method and adopting the commercial…

Materials scienceNuclear engineeringThermofluid-dynamic7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionThermal hydraulicsDivertorlaw0103 physical sciencesMass flow rateWater coolingGeneral Materials ScienceCFD analysi010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringPressure dropThermofluid-dynamicsCassette bodyMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringFlow velocityVacuum pumpFusion Engineering and Design
researchProduct

Computational thermofluid-dynamic analysis of DEMO divertor cassette body cooling circuit

2018

Abstract Within the framework of the Work Package Divertor, Subproject: Cassette Design and Integration (WPDIV-Cassette) of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. The research activity has been carried out following a theoretical-computational approach based on the finite volume method and adopting a qualified Computational Fluid-Dynamic (CFD) code. Fully-coupled fluid-structure CFD analyses have been carried out for the recently-revised cassette body cooling circuit under nominal steady state conditions, imposing a non-uniform sp…

Neutron transportNuclear engineeringComputational fluid dynamicsThermofluid-dynamic01 natural sciences010305 fluids & plasmasDivertor0103 physical sciencesWater coolingGeneral Materials ScienceTotal pressureCFD analysi010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFinite volume methodSteady stateCassette bodybusiness.industryDivertorMechanical EngineeringCoolantNuclear Energy and EngineeringEnvironmental scienceMaterials Science (all)business
researchProduct

Hydraulic analysis of EU-DEMO divertor plasma facing components cooling circuit under nominal operating scenarios

2019

Within the framework of the Work Package DIV 1 – “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the steady state thermal-hydraulic behaviour of the DEMO divertor cassette cooling circuit, focussing the attention on its Plasma Facing Components (PFCs). The research campaign has been carried out following a theoretical-computational approach based on the Finite Volume Method and adopting the commercial Computational Fluid-Dynamic code ANSYS-CFX. A realistic model of the PFCs cooling circuit has been analysed, specifically embedding each Plasma Facing Unit (PFU) cooling chann…

Nuclear engineeringCFD analysis; DEMO; Divertor; Plasma facing components; Thermofluid-dynamics7. Clean energy01 natural sciences010305 fluids & plasmasDivertor0103 physical sciencesGeneral Materials ScienceBoundary value problemCFD analysiTotal pressure010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariPlasma facing componentsCivil and Structural EngineeringThermofluid-dynamicsFinite volume methodSteady stateTurbulenceMechanical EngineeringDivertorPlasma facing componentCoolantVibrationNuclear Energy and EngineeringEnvironmental scienceCFD analysisFusion Engineering and Design
researchProduct

On the numerical assessment of the thermal-hydraulic operating map of the DEMO Divertor Plasma Facing Components cooling circuit

2020

Abstract Within the framework of the Work Package DIV 1 - “Divertor Cassette Design and Integration” of the EUROfusion action, a research campaign has been jointly carried out by University of Palermo and ENEA to investigate the thermal-hydraulic behaviour of the DEMO divertor cassette cooling system, focussing the attention on the 2018 configuration of the Plasma Facing Components (PFCs) circuit consistent with the DEMO baseline 2017. The research campaign has been carried out following a theoretical-computational approach based on the finite volume method and adopting the commercial Computational Fluid-Dynamic (CFD) code ANSYS CFX. A steady-state CFD analysis has been carried out for the …

Nuclear engineeringComputational fluid dynamics01 natural sciences010305 fluids & plasmasThermal hydraulicsDivertor0103 physical sciencesMass flow rateWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOPlasma facing componentsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCritical heat fluxbusiness.industryMechanical EngineeringDivertorCoolantNuclear Energy and EngineeringEnvironmental sciencebusinessCFD analysisFusion Engineering and Design
researchProduct

On the thermal-hydraulic optimization of DEMO divertor plasma facing components cooling circuit

2018

Abstract Within the framework of the Work Package Divertor, Subproject: Cassette Design and Integration (WPDIV-Cassette) of the EUROfusion action, a research campaign has been jointly carried out by ENEA and University of Palermo to investigate the thermal-hydraulic performances of the DEMO divertor cassette cooling system. Attention has been focussed on the divertor Plasma Facing Components (PFCs) cooling circuit and a parametric analysis has been carried out in order to assess the potential impact of proper layout changes on its thermal-hydraulic performances, mainly in terms of coolant total pressure drop, flow velocity distribution and margin against critical heat flux occurrence. The r…

Nuclear engineeringComputational fluid dynamicsThermofluid-dynamic01 natural sciences7. Clean energy010305 fluids & plasmasThermal hydraulicsDivertor0103 physical sciencesWater coolingGeneral Materials ScienceCFD analysi010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFinite volume methodCritical heat fluxbusiness.industryDivertorMechanical EngineeringPlasma facing componentCoolantFlow velocityNuclear Energy and EngineeringEnvironmental scienceMaterials Science (all)businessFusion Engineering and Design
researchProduct

Hydraulic assessment of an upgraded pipework arrangement for the DEMO divertor plasma facing components cooling circuit

2021

Abstract In the context of the Work Package DIVertor (WPDIV) of the EUROfusion action, a research campaign has been carried out by University of Palermo in cooperation with ENEA to assess the thermal-hydraulic performances of the DEMO divertor cooling system, concentrating the attention on its 2019 Plasma Facing Components (PFCs) configuration, relevant to DEMO baseline 2017. The research activity has been performed following a theoretical-numerical technique based on the finite volume method and adopting the well-known ANSYS CFX CFD code. The PFCs cooling circuit thermal-hydraulic performances under nominal steady-state conditions, assessed mainly in terms of coolant total pressure drop, c…

Nuclear engineeringContext (language use)01 natural sciences010305 fluids & plasmaslaw.inventionDivertorlaw0103 physical sciencesWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOPlasma facing componentsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCritical heat fluxMechanical EngineeringDivertorCoolantAxial compressorNuclear Energy and EngineeringEnvironmental scienceInlet manifoldCFD analysis
researchProduct

Banki-Michell Optimal Design by Computational Fluid Dynamics Testing and Hydrodynamic Analysis

2013

In hydropower, the exploitation of small power sources requires the use of small turbines that combine efficiency and economy. Banki-Michell turbines represent a possible choice for their simplicity and for their good efficiency under variable load conditions. Several experimental and numerical tests have already been designed for examining the best geometry and optimal design of cross-flow type machines, but a theoretical framework for a sequential design of the turbine parameters, taking full advantage of recently expanded computational capabilities, is still missing. To this aim, after a review of the available criteria for Banki-Michell parameter design, a novel two-step procedure is de…

Optimal designEngineeringhydraulic turbineControl and OptimizationNozzleEnergy Engineering and Power TechnologyMechanical engineeringComputational fluid dynamicsTurbinelcsh:Technologyjel:Q40Impellercross-flow turbinejel:Qjel:Q43jel:Q42jel:Q41jel:Q48jel:Q47hydraulic turbine; Banki-Michell; cross-flow turbine; CFD analysisElectrical and Electronic EngineeringEngineering (miscellaneous)jel:Q49Renewable Energy Sustainability and the Environmentbusiness.industrylcsh:Tjel:Q0jel:Q4Power (physics)Sequential analysisBanki-MichellCross-flow turbinebusinessCFD analysisEnergy (miscellaneous)Energies; Volume 6; Issue 5; Pages: 2362-2385
researchProduct