Search results for "CH4"

showing 10 items of 16 documents

Structural, catalytic and electrical investigation on La1-xSrxCr1-yFeyO3- δ as anodes for IT-SOFCs

2012

IT-SOFC Anode Rietveld analysis CH4-TPR DC conductivity
researchProduct

The methane Raman spectrum from 1200 to 5500 cm(-1): A first step toward temperature diagnostic using methane as a probe molecule in combustion syste…

2005

International audience; We present a study of the spontaneous Raman spectra of (CH4)-C-12 from 1200 to 5500 cm(-1) at various temperatures. This study is of interest from a fundamental as well as from a practical point of view with regards to the temperature diagnostic in hydrocarbon combustion. The present investigation shows that the spontaneous (CH4)-C-12 Raman spectra are very sensitive to temperature and that the complexity of methane spectra is not an obstacle to use methane as a probe molecule in laser-diagnostic techniques. Our study consists in determining the polarisability parameters of methane (CH4)-C-12, unknown at the present time, from spontaneous Raman spectra recorded at pr…

Materials scienceAnalytical chemistry02 engineering and technologyCombustion01 natural sciences7. Clean energyTemperature measurementMethaneSpectral linesymbols.namesakechemistry.chemical_compoundNuclear magnetic resonance(CH4)-C-12Coherent anti-Stokes Raman spectroscopyPhysical and Theoretical ChemistryRamanSpectroscopyPropellant[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]methane010401 analytical chemistrypolarisability021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical scienceschemistry13. Climate actionsymbolsCombustion chamber0210 nano-technologyRaman spectroscopytensorial formalismtemperature measurement
researchProduct

Expression pattern of Notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand–receptor interactions in intrathym…

1999

The suggested role of Notch1 or its mutants in thymocyte differentiation and T cell tumorigenesis raises the question of how the different members of the Notch family influence distinct steps in T cell development and the role played by Notch ligands in the thymus. We report here that different Notch receptor-ligand partnerships may occur inside the thymus, as we observed differential expression of Notch1, 2 and 3 receptors, their ligands Jagged1 and 2, and downstream intracellular effectors hairy and Enhancer of Split homolog 1 (HES-1) and hairy and Enhancer of Split homolog 5 (HES-5), depending on ontogenetic stage and thymic cell populations. Indeed, while Jagged2 is expressed in both st…

MaleT-LymphocytesLigandsMiceNotch FamilyCell–cell interactionT-Lymphocyte SubsetsBasic Helix-Loop-Helix Transcription FactorsImmunology and AllergySerrate-Jagged ProteinsReceptor Notch2Receptor Notch1Receptor Notch4Receptor Notch3Receptors NotchHelix-Loop-Helix Motifscell-cell interaction; thymic stromal cells; thymocyteCell DifferentiationGeneral MedicineCell biologyDNA-Binding ProteinsThymocytemedicine.anatomical_structureIntercellular Signaling Peptides and ProteinsJagged-2 ProteinSignal TransductionStromal cellLymphoid TissueT cellImmunologyNotch signaling pathwayReceptors Cell SurfaceThymus GlandBiologySerrate-Jagged ProteinsProto-Oncogene ProteinsmedicineAnimalsRNA MessengerHomeodomain ProteinsCalcium-Binding ProteinsMembrane ProteinsProteinsMice Inbred C57BLRepressor ProteinsProtein BiosynthesisTranscription Factor HES-1Jagged-1 ProteinStromal CellsCarrier ProteinsJagged-1 ProteinTranscription FactorsInternational Immunology
researchProduct

Thermomineral waters of Greece: geochemical characterization

2020

75 °C). In terms of pH most results vary from 5.5 to 823 °C) ii) warm (23 40 °C) iii) thermal (40 75 °C) and iv) hyperthermal (&gtfew springs show either very low pH (&lt10) proposing serpentinization processes. Regarding TDS concentrations collected waters can be subdivided into low salinity (up to 1.5 g/L) brackish (up to 20 g/L) and saline (up to 43 g/L). The medium high salinities can be justified by mixing with sea water and/or strong waterrock interaction processes. Isotope composition of O and H ranges from 12.7 to +2.7 ‰ SMOW and from 91 to +12 ‰ SMOW respectively and is generally comprised between the Global Meteoric Water Line and the East Mediterranean Meteoric Water Line. Only few water samples show a positive shift for δ18O possibly related to high temperature waterrock interaction processes. Carbon dioxide (18 997000 μmol/mol) or N2 (1100 989000 μmol/mol) or CH4 (&ltMany geothermal areas of Greece are located in regions affected by Miocene or Quaternary volcanism and in continental basins characterised by elevated heat flow. Moreover the majority of them is found along the coast as well as in islands of the Aegean Sea and thus thermal water is often brackish to saline due to marine intrusion into costal aquifer. In the present study almost 300 thermal and cold mineral water samples were collected along the Hellenic territory with their physicochemical parameters (temperature pH electrical conductivity and Eh) and the amount of bicarbonates (titration with 0.1N HCl) being determined in situ. Additionally gases found either in free or dissolved phase were sampled. Both water and gas samples were analysed at the INGVPa laboratories for major ions (Ion Chromatography) silica (Inductively Coupled Plasma Optical Emission Spectrometry) chemical composition of free and dissolved gases (Gas Chromatography) water isotopes (O and H) and carbon and helium isotopes of free and dissolved gases (Mass Spectrometry). The temperature of the investigated waters ranges from 6.5 to 98°C pH from 1.96 to 11.98 whilst Total Dissolved Solids (TDS) from 0.06 to 43 g/L. Based on the temperature parameter waters can be divided into four groups: i) cold (&lt0.5 913000 μmol/mol) are the prevailing gas species found in the studied sites. The δ13CCO2 values ranged from 20.1 to +8.5 ‰ whilst the isotope ratio of He from 0.21 to 6.71 R/RA.4) suggesting interaction with H2Srich gases or very high pH values (&gtSettore GEO/08 - Geochimica E Vulcanologia
researchProduct

Spectroscopic tools for remote sensing of greenhouse gases CH4, CF4 and SF6

2003

International audience; Highly symmetrical molecules such as CH4, CF4 or SF6 are known to be atmospheric pollutants and greenhouse gases. High-resolution spectroscopy in the infrared is particularly suitable for the monitoring of gas concentration and radiative transfers in the earth's atmosphere. This technique requires extensive theoretical studies for the modeling of the spectra of such molecules (positions, intensities and shapes of absorption lines). Here, we have developed powerful tools for the analysis and the simulation of absorption spectra of highly symmetrical molecules. These tools have been implemented in the spherical top data system (STDS) and highly-spherical top data syste…

010504 meteorology & atmospheric sciencesAbsorption spectroscopy[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Infrared01 natural sciencesSpectral lineAtmosphereSoftware[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]0103 physical sciencesRadiative transferEnvironmental ChemistryClimate changeSpectroscopy0105 earth and related environmental sciencesRemote sensingCH4010304 chemical physicsbusiness.industryChemistryCF4Molecular spectroscopyGreenhouse gases13. Climate actionGreenhouse gasbusinessSimulationSF6
researchProduct

Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw

2019

Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO 2 ) and methane (CH 4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution…

0106 biological scienceshiilidioksidiPeat010504 meteorology & atmospheric sciencesPermafrostikiroutaPermafrostAtmospheric sciences01 natural sciencesMethaneCO2 EXCHANGEclimate warmingPALSA MIREchemistry.chemical_compoundDissolved organic carbonGeneral Environmental SciencekasvihuoneilmiöGlobal and Planetary ChangeCLIMATE-CHANGEEcologyArctic Regionsmethane oxidationhiilen kiertopermafrost-carbon-feedbackPlantsmesocosmCOORGANIC-MATTERkasvihuonekaasutCH4 FLUXESgreenhouse gasNORTHERN PEATLANDSCarbon dioxideCO2MethaneOxidation-ReductionBiogeochemical cycleTUNDRA SOILSClimate Changeta1172ta1171010603 evolutionary biologymetaaniCarbon CycleGreenhouse GasesMETHANE EMISSIONSEnvironmental Chemistry0105 earth and related environmental sciencesAtmosphere15. Life on landCarbon DioxideWATER-TABLEEXTRACTION METHODArcticchemistry13. Climate actionGreenhouse gasEnvironmental science
researchProduct

In-situ analysis of the gas-emissions of the Eastern Carpathians (Romania) using the Multi-Gas instrument

2019

The Multi-Gas instrument is an important tool for the investigations and monitoring of volcanic systems world- wide, because it can be easily placed on a volcano and can provide real-time data on the compositional changes of the fluids that are released (Aiuppa et al., 2005, Shinohara et al., 2005). We used a specially designed Multi-Gas to gather in situ compositional information about low-temperature, CO2-rich gases, emerging from different manifestations like dry gas emissions (mofettes), bubbling pools and springs. The instrument is equipped with two IR sensors for CO2 (0-100%) and CH4 (0-7%) and one electrochemical sensor for H2S (0-200 ppm). The Multi-Gas was used during several field…

Multi-Gas instrument CO2 and CH4Settore GEO/08 - Geochimica E Vulcanologia
researchProduct

Simulations on the mechanism of CNT bundle growth upon smooth and nanostructured Ni as well as θ-Al2O3 catalysts

2011

Abstract In the current study, we have performed ab initio DFT calculations on the gradually growing 2D periodic models of capped single-wall carbon nanotubes (SW CNTs) upon their perpendicular junctions with the Ni(111) substrate, in order to understand the peculiarities of the initial stage of their growth on either smooth or nanostructured catalytic particles. Appearance of the adsorbed carbon atoms upon the substrate follows from the dissociation of CVD hydrocarbon molecules, e.g., CH4: (CH4)ads → (CH)ads+3Hads and (CH)ads → Cads+Hads. (Since the effective growth of CNTs upon Ni nanoparticles occur inside the nanopores of amorphous alumina, we have also simulated analogous surface react…

adsorption and dissociation of ch4Materials scienceQC1-999General Physics and AstronomyNanoparticleNanotechnology02 engineering and technologyCarbon nanotubeflat and nanostructured surfaces of ni and θ-al2o3 catalystsarcmchair and zigzag-type chiralities01 natural sciencesdft calculationsDissociation (chemistry)Catalysislaw.inventionNanoclusterslaw0103 physical sciencesMoleculemechanism of cnt growth010306 general physicsbundles of single-wall cntsPhysics021001 nanoscience & nanotechnologyAmorphous solidChemical bondChemical engineeringcnt-ni junction0210 nano-technologyCentral European Journal of Physics
researchProduct

Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman nu(1) band

2000

International audience; The shape of the nu(1) Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915-2918 cm(-1) spectral region for total pressures from 0.4 to 70 atm and mixtures of approximate to 5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the re…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]SUM-RULESNITROGEN[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]PERTURBER DEPENDENCIESDENSITYPRESSURE-SHIFT COEFFICIENTS(CH4)-C-12CO2 INFRARED-SPECTRANU(3) BANDTEMPERATUREPARAMETERS
researchProduct

Etude théorique de surfaces d'énergie potentielle, de moment dipolaire et de polarizabilité des complexes de van der Waals CH4-N2 et C2H4-C2H4

2010

In the present thesis both ab initio and analytical calculations were carried out for thepotential energy, dipole moment and polarizability surfaces of the weakly bound van der Waals complexes CH4-N2 and C2H4-C2H4 for a broad range of intermolecular separations and configurations in the approximation of the rigid interacting molecules. For ab initio calculations the CCSD(T), CCSD(T)-F12 and less computationally expensive methods such as MP2, MP2-F12, SAPT, DFT-SAPT were employed (for all methods the aug-cc-pVTZ basis set was used). The BSSE correction was taken into account during the calculations. The analytical calculations were performed in the framework of the classical long-range appro…

Énergie potentiellePolarisabilité[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Complexes van der Waals[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]No english keywords[ PHYS.COND.CM-GEN ] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Moment dipolaireDimère d'éthylèneComplexes CH4-N2
researchProduct