Search results for "CHROMATIN"

showing 10 items of 490 documents

Expression of the genetic suppressor element 24.2 (GSE24.2) decreases DNA damage and oxidative stress in X-linked dyskeratosis congenita cells.

2014

This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.

TelomeraseDNA repairDNA damagelcsh:MedicineCell Cycle ProteinsComputingMilieux_LEGALASPECTSOFCOMPUTINGBiologyTransfectionBioinformaticsmedicine.disease_causeBiochemistryDyskeratosis CongenitaDyskerinCell LineMiceHeterochromatinMolecular Cell BiologyMedicine and Health SciencesmedicineAnimalsHumanslcsh:ScienceMutationMultidisciplinarylcsh:RBiology and Life SciencesNuclear ProteinsCell BiologyHematologyGenetic TherapyTransfectionTelomeremedicine.diseaseTelomereCell biologyOxidative StressGene Expression Regulationlcsh:QPeptidesDyskeratosis congenitaResearch ArticleDNA DamagePLoS ONE
researchProduct

Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer

2013

Journal article TERT-locus SNPs and leukocyte telomere measures are reportedly associated with risks of multiple cancers. Using the Illumina custom genotyping array iCOGs, we analyzed ~480 SNPs at the TERT locus in breast (n = 103,991), ovarian (n = 39,774) and BRCA1 mutation carrier (n = 11,705) cancer cases and controls. Leukocyte telomere measurements were also available for 53,724 participants. Most associations cluster into three independent peaks. The minor allele at the peak 1 SNP rs2736108 associates with longer telomeres (P = 5.8 × 10!-7), lower risks for estrogen receptor (ER)-negative (P = 1.0 × 10!-8) and BRCA1 mutation carrier (P = 1.1 × 10!-5) breast cancers and altered promot…

TelomeraseMessengerCàncer d'ovariEstrogen receptorAetiology screening and detection [ONCOL 5]0302 clinical medicineBreast cancerRisk FactorsAlternative Splicing; Biomarkers Tumor; Breast Neoplasms; Case-Control Studies; Chromatin; DNA Methylation; Female; Gene Expression Profiling; Genetic Loci; Genetic Predisposition to Disease; Genome-Wide Association Study; Genotype; Humans; Luciferases; Oligonucleotide Array Sequence Analysis; Ovarian Neoplasms; Polymorphism Single Nucleotide; RNA Messenger; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; Risk Factors; Telomerase; Telomere; GeneticsGenotypeBUCCAL CELLSLuciferasesTelomeraseOligonucleotide Array Sequence AnalysisOvarian Neoplasms0303 health sciencesTumorTelòmerReverse Transcriptase Polymerase Chain ReactionGENETIC-VARIATIONCOMMON VARIANTSSingle Nucleotidetert-clptm1l locus; genome-wide association; genetic-variation; susceptibility loci; buccal cells; fibroblasts; common variants; carcinoma; reverse-transcriptase htert; metaanalysisTelomereAetiology screening and detection Immune Regulation [ONCOL 5]Chromatin3. Good healthTumor Markers Biological030220 oncology & carcinogenesisFemaleFIBROBLASTSGenotypeSUSCEPTIBILITY LOCICARCINOMASingle-nucleotide polymorphismBreast NeoplasmsBiologyReal-Time Polymerase Chain ReactionPolymorphism Single NucleotideArticleCàncer de mama03 medical and health sciencesBreast cancerSDG 3 - Good Health and Well-beingTranslational research [ONCOL 3]Ovarian cancermedicineGeneticsBiomarkers TumorHumansGenetic Predisposition to DiseaseRNA MessengerPolymorphismAlleleGENOME-WIDE ASSOCIATIONMETAANALYSIS030304 developmental biologyMolecular epidemiology Aetiology screening and detection [NCEBP 1]Breast cancer susceptibilityHereditary cancer and cancer-related syndromes [ONCOL 1]Translational research Genomic disorders and inherited multi-system disorders [ONCOL 3]Gene Expression ProfilingDNA Methylationmedicine.diseaseMolecular biologyTERT-CLPTM1L LOCUSTelomereMinor allele frequencyAlternative SplicingGenetic LociCase-Control StudiesRNABiomarkersREVERSE-TRANSCRIPTASE HTERTGenome-Wide Association StudyNature genetics
researchProduct

Chromatin modifiers and recombination factors promote a telomere fold-back structure, that is lost during replicative senescence.

2020

Telomeres have the ability to adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomere chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a dis…

TelomeraseProtein Folding:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::DNA-Binding Proteins::Rad52 DNA Repair and Recombination Protein [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins [Medical Subject Headings]Gene ExpressionYeast and Fungal ModelsArtificial Gene Amplification and ExtensionQH426-470BiochemistryPolymerase Chain ReactionChromosome conformation captureHistonesCromatina0302 clinical medicineSirtuin 2Macromolecular Structure AnalysisSilent Information Regulator Proteins Saccharomyces cerevisiaeCellular Senescence:Organisms::Eukaryota::Fungi::Yeasts::Saccharomyces::Saccharomyces cerevisiae [Medical Subject Headings]0303 health sciencesChromosome BiologyEukaryota:Phenomena and Processes::Genetic Phenomena::Genetic Processes::DNA Replication [Medical Subject Headings]TelomereSubtelomere:Anatomy::Cells::Cellular Structures::Intracellular Space::Cell Nucleus::Cell Nucleus Structures::Intranuclear Space::Chromosomes::Chromosome Structures::Telomere [Medical Subject Headings]Chromatin3. Good healthChromatinCell biologyNucleic acidsTelomeres:Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Cycle::Cell Division::Telomere Homeostasis [Medical Subject Headings]Experimental Organism SystemsDaño del ADNEpigeneticsResearch ArticleSenescenceDNA Replication:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Hydrolases::Amidohydrolases::Histone Deacetylases [Medical Subject Headings]Chromosome Structure and FunctionProtein StructureSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeBiologyResearch and Analysis MethodsHistone DeacetylasesChromosomes03 medical and health sciencesSaccharomycesModel Organisms:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Transferases::One-Carbon Group Transferases::Methyltransferases [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Intracellular Signaling Peptides and Proteins::Sirtuins::Sirtuin 2 [Medical Subject Headings]:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Fungal Proteins::Saccharomyces cerevisiae Proteins::Silent Information Regulator Proteins Saccharomyces cerevisiae [Medical Subject Headings]DNA-binding proteinsGenetics:Chemicals and Drugs::Enzymes and Coenzymes::Enzymes::Recombinases::Rec A Recombinases::Rad51 Recombinase [Medical Subject Headings]Molecular Biology TechniquesMolecular Biology030304 developmental biologyCromosomasSenescencia celularOrganismsFungiBiology and Life SciencesProteinsTelomere HomeostasisCell BiologyDNAMethyltransferasesG2-M DNA damage checkpointProteína recombinante y reparadora de ADN Rad52YeastTelomereRad52 DNA Repair and Recombination ProteinRepressor ProteinsAnimal Studies:Chemicals and Drugs::Amino Acids Peptides and Proteins::Proteins::Transcription Factors::Repressor Proteins [Medical Subject Headings]DNA damageRad51 RecombinaseHomologous recombination030217 neurology & neurosurgeryTelómeroDNA DamagePLoS Genetics
researchProduct

The histone deacetylase Rpd3 regulates the heterochromatin structure of Drosophila telomeres

2011

Telomeres are specialized structures at the end of eukaryotic chromosomes that are required to preserve genome integrity, chromosome stability and nuclear architecture. Telomere maintenance and function are established epigenetically in several eukaryotes. However, the exact chromatin enzymatic modifications regulating telomere homeostasis are poorly understood. In Drosophila melanogaster, telomere length and stability are maintained through the retrotransposition of specialized telomeric sequences and by the specific loading of protecting capping proteins, respectively. Here, we show that the loss of the essential and evolutionarily conserved histone deacetylase Rpd3, the homolog of mammal…

Telomere-binding proteinGeneticsEpigenomicsMaleHistone deacetylase 5Histone deacetylase 2HDAC11Histone Deacetylase 1Cell BiologyBiologyTelomereHistone H4Telomere HomeostasisDrosophila melanogasterHeterochromatinHistone H2Ahistone deacetylaseHistone codeAnimalsDrosophila Proteinsanimals; article; chromosome aberration; chromosome structure; drosophila; drosophila melanogaster; drosophila proteins; enzyme activity; epigenetics; epigenomics; eukaryota; heterochromatin; histone acetylation; histone deacetylase 1; histone deacetylase rpd 3; histone methylation; male; mammalia; nonhuman; polytene chromosome; priority journal; regulatory mechanism; telomere; unclassified drugPolytene Chromosomes
researchProduct

Time-Lapse Dynamics of the Mouse Oocyte Chromatin Organisation during Meiotic Resumption

2014

In the mammalian oocyte, distinct patterns of centromeres and pericentromeric heterochromatin localisation correlate with the gamete’s developmental competence. Mouse antral oocytes display two main types of chromatin organisation: SN oocytes, with a ring of Hoechst-positive chromatin surrounding the nucleolus, and NSN oocytes lacking this ring. When matured to MII and fertilised, only SN oocytes develop beyond the 2-cell, and reach full term. To give detailed information on the dynamics of the SN or NSN chromatin during meiosis resumption, we performed a 9 hr time-lapse observation. The main significant differences recorded are: (1) reduction of the nuclear area only in SN oocytes; (2) ~17…

Time FactorsArticle SubjectNucleoluslcsh:MedicinePerivitelline spaceBiologyTime-Lapse ImagingGeneral Biochemistry Genetics and Molecular BiologyMiceProphaseMeiosisCentromeremedicineAnimalsCells CulturedGeneticsGeneral Immunology and Microbiologylcsh:RGeneral MedicineOocyteChromatinCell biologyChromatinMeiosismedicine.anatomical_structureOocytesGameteFemaleResearch ArticleBioMed Research International
researchProduct

Nucleosome-specific, Time-dependent Changes in Histone Modifications during Activation of the Early Growth Response 1 (Egr1) Gene

2014

Histone post-translational modifications and nucleosome remodeling are coordinate events involved in eukaryotic transcriptional regulation. There are relatively few data on the time course with which these events occur in individual nucleosomes. As a contribution to fill this gap, we first describe the nature and time course of structural changes in the nucleosomes -2, -1, and +1 of the murine Egr1 gene upon induction. To initiate the transient activation of the gene, we used the stimulation of MLP29 cells with phorbol esters and the in vivo activation after partial hepatectomy. In both models, nucleosomes -1 and +1 are partially evicted, whereas nucleosomes +1 and -2 slide downstream durin…

Time FactorsTranscription GeneticBiologyBiochemistryChromatin remodelingCell LineHistonesMiceHistone H1Histone methylationAnimalsHepatectomyHistone codeNucleosomeGene RegulationPromoter Regions GeneticMolecular BiologyEarly Growth Response Protein 1Mice KnockoutCell BiologyMolecular biologySWI/SNFLiver RegenerationNucleosomesCell biologyHistoneLiverChromatosomeHepatocytesbiology.proteinTetradecanoylphorbol AcetateProtein Processing Post-TranslationalJournal of Biological Chemistry
researchProduct

Electron Microscopic Contrast of the Cytoskeleton and Junctional Complexes of Intestinal Epithelial Cells by Ethanolic Phosphotungstic Acid

2000

After glutaraldehyde fixation and treatment with ethanolic phosphotungstic acid (E-PTA) before plastic embedding, sections of rat large intestine showed a characteristic electron contrasting pattern in epithelial cells. The axis of microvilli, terminal web, a thin band below the luminal plasma membrane, centrioles and junctional complexes (tight junctions, adherens junctions, and desmosomes) appeared highly contrasted. In addition to protein components of microfilaments and intermediate filaments, proteins from the junctional complexes could also be implicated in the contrasting reaction with E-PTA. Mitochondrial membranes, chromatin masses, and nucleoli of enterocytes showed considerable e…

Tissue FixationBiologyMicrofilamentSpecimen HandlingAdherens junctionTerminal webGlycocalyxchemistry.chemical_compoundAnimalsIntestine LargePhosphotungstic acidIntestinal MucosaRats WistarCytoskeletonIntermediate filamentCytoskeletonEthanolMicrovilliStaining and LabelingTissue EmbeddingTight junctionEpithelial CellsPhosphotungstic AcidAgricultural and Biological Sciences (miscellaneous)ChromatinMitochondriaRatsCell biologySolutionsMicroscopy ElectronIntercellular JunctionschemistrySolventsAnatomyCell NucleolusEuropean Journal of Morphology
researchProduct

Mutational synergy coordinately remodels chromatin accessibility, enhancer landscape and 3-Dimensional DNA topology to alter gene expression during l…

2020

AbstractAltered transcription is a cardinal feature of acute myeloid leukemia (AML), however, exactly how mutations synergize to remodel the epigenetic landscape and rewire 3-Dimensional (3-D) DNA topology is unknown. Here we apply an integrated genomic approach to a murine allelic series that models the two most common mutations in AML, Flt3-ITD and Npm1c. We then deconvolute the contribution of each mutation to alterations of the epigenetic landscape and genome organization, and infer how mutations synergize in the induction of AML. These analyses allow the identification of long-range cis-regulatory circuits, including a novel super-enhancer of the Hoxa locus, as well as larger and more …

Transcription (biology)hemic and lymphatic diseasesMyeloid leukemiaLocus (genetics)EpigeneticsAlleleBiologyEnhancerTopologyChromatinGenomic organization
researchProduct

The stable repression of mesenchymal program is required for hepatocyte identity: A novel role for hepatocyte nuclear factor 4α

2011

The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial-to-mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal-to-epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4α (HNF4α) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real-time quantitative polymerase…

Transcription FactorCellular differentiationMESH: Mice KnockoutMESH: HepatocytesMesodermMice0302 clinical medicineMESH: Liver NeoplasmsMESH: AnimalsHepatocyteHepatocyte Nuclear Factor 1-alphaMESH: Carcinoma HepatocellularRegulator geneHepatocyte differentiationMice KnockoutMESH: Mesoderm0303 health sciencesLiver NeoplasmsCell DifferentiationMESH: Transcription FactorsCell biologyHepatocyte nuclear factorsPhenotypeMESH: Models AnimalHepatocyte Nuclear Factor 4MESH: Epithelial CellsLiver Neoplasm030220 oncology & carcinogenesisModels AnimalMESH: Hepatocyte Nuclear Factor 4HumanMESH: Cell DifferentiationMESH: Cell Line TumorCarcinoma Hepatocellular[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyMESH: PhenotypeArticle03 medical and health scienceshepatocyte; mesenchymal program; SnailCell Line TumorAnimalsHumansMESH: Hepatocyte Nuclear Factor 1-alphaMESH: MiceTranscription factorAnimals; Carcinoma Hepatocellular; Cell Differentiation; Cell Line Tumor; Epithelial Cells; Hepatocyte Nuclear Factor 1-alpha; Hepatocyte Nuclear Factor 4; Hepatocytes; Humans; Liver Neoplasms; Mesoderm; Mice; Mice Knockout; Models Animal; Phenotype; Snail Family Transcription Factors; Transcription Factors; Hepatology030304 developmental biologyEpithelial CellMESH: HumansHepatologyAnimalMesenchymal stem cellEpithelial CellsSnail Family Transcription FactorMolecular biologyHepatocyte nuclear factor 4HepatocytesSnail Family Transcription FactorsChromatin immunoprecipitationTranscription Factors
researchProduct

Chromatin-dependent regulation of RNA polymerases II and III activity throughout the transcription cycle

2015

The particular behaviour of eukaryotic RNA polymerases along different gene regions and amongst distinct gene functional groups is not totally understood. To cast light onto the alternative active or backtracking states of RNA polymerase II, we have quantitatively mapped active RNA polymerases at a high resolution following a new biotin-based genomic run-on (BioGRO) technique. Compared with conventional profiling with chromatin immunoprecipitation, the analysis of the BioGRO profiles in Saccharomyces cerevisiae shows that RNA polymerase II has unique activity profiles at both gene ends, which are highly dependent on positioned nucleosomes. This is the first demonstration of the in vivo infl…

Transcription factoriesSaccharomyces cerevisiae ProteinsTranscription Elongation GeneticTranscription GeneticRNA polymerase II28Saccharomyces cerevisiaeBiology03 medical and health scienceschemistry.chemical_compoundTranscripció genèticaRNA polymeraseGeneticsRNA polymerase IRNA polymerase II holoenzyme9030304 developmental biologyGenetics0303 health sciencesGeneral transcription factorGene regulation Chromatin and Epigenetics030302 biochemistry & molecular biologyRNA Polymerase IIIGenomicsNucleosomesCell biologychemistryTranscription Termination Geneticbiology.proteinRNARNA Polymerase IIGenome FungalTranscription factor II DSmall nuclear RNA
researchProduct