Search results for "CHROMATIN"

showing 10 items of 490 documents

ICIL: a new ISWI Complex In D.melanogaster Larvae

2008

chromatin remodelling complex
researchProduct

Role of epigenetic factors in the selection of the alternative splicing isoforms of human

2017

Mutation-driven activation of KRAS is crucial to cancer development. The human gene yields four mRNA splicing isoforms, 4A and 4B being translated to protein. Their different properties and oncogenic potential have been studied, but the mechanisms deciding the ratio 4A/4B are not known. To address this issue, the expression of the four KRAS isoforms was determined in 9 human colorectal cancer cell lines. HCT116 and SW48 were further selected because they present the highest difference in the ratio 4A/4B (twice as much in HCT116 than in SW48). Chromatin structure was analysed at the exon 4A, characteristic of isoform 4A, at its intronic borders and at the two flanking exons. The low nucleoso…

chromatin structurealternative splicingKRAS isoformsepigeneticscolorectal cancerResearch PaperOncotarget
researchProduct

Role for Chromatin Remodeling Factor Chd1 in Learning and Memory

2019

Precise temporal and spatial regulation of gene expression in the brain is a prerequisite for cognitive processes such as learning and memory. Epigenetic mechanisms that modulate the chromatin structure have emerged as important regulators in this context. While posttranslational modification of histones or the modification of DNA bases have been examined in detail in many studies, the role of ATP-dependent chromatin remodeling factors (ChRFs) in learning- and memory-associated gene regulation has largely remained obscure. Here we present data that implicate the highly conserved chromatin assembly and remodeling factor Chd1 in memory formation and the control of immediate early gene (IEG) r…

cognitionlearningimmediate early genesepigeneticshippocampuslcsh:RC321-571memoryCellular and Molecular Neurosciencegene expressionchromatinlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular BiologyNeuroscienceOriginal Research
researchProduct

Pluripotent stem cells to model Hutchinson-Gilford progeria syndrome (HGPS): Current trends and future perspectives for drug discovery

2015

Progeria, or Hutchinson-Gilford progeria syndrome (HGPS), is a rare, fatal genetic disease characterized by an appearance of accelerated aging in children. This syndrome is typically caused by mutations in codon 608 (p.G608G) of the LMNA, leading to the production of a mutated form of lamin A precursor called progerin. In HGPS, progerin accumulates in cells causing progressive molecular defects, including nuclear shape abnormalities, chromatin disorganization, damage to DNA and delays in cell proliferation. Here we report how, over the past five years, pluripotent stem cells have provided new insights into the study of HGPS and opened new original therapeutic perspectives to treat the disea…

congenital hereditary and neonatal diseases and abnormalitiesAgingDiseaseBiologymedicine.disease_causeModels BiologicalBiochemistryLMNAProgeriaPluripotent stem cellsDrug DiscoverymedicineHumansInduced pluripotent stem cellMolecular BiologyGeneticsProgeriaMutationintegumentary systemDrug discoverynutritional and metabolic diseasesLamin Type Amedicine.diseaseProgerinChromatinAgeingNeurologyMutationCancer researchBiotechnologyAgeing Research Reviews
researchProduct

Epigenetic involvement in Hutchinson-Gilford progeria syndrome: a mini-review.

2013

Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to a severe premature ageing phenotype, caused by mutations in the <i>LMNA</i> gene. The <i>LMNA</i> gene codes for lamin-A and lamin-C proteins, which are structural components of the nuclear lamina. HGPS is usually caused by a de novo <i>C1824T</i> mutation that leads to the accumulation of a dominant negative form of lamin-A called progerin. Progerin also accumulates physiologically in normal ageing cells as a rare splicing form of lamin-A transcripts. From this perspective, HGPS cells seem to be good candidates for the study of the physiological mechanisms of ageing…

congenital hereditary and neonatal diseases and abnormalitiesAgingEuchromatinSettore BIO/11 - Biologia MolecolarecernaBiologySettore MED/13 - EndocrinologiaEpigenesis GeneticLMNAHistonesAdenosine TriphosphateProgeriaHGPS Progeria; epigenetics; chromatin; cernamedicineHumansEpigeneticsProtein PrecursorsChildEpigenesisGeneticsCell NucleusProgeriaintegumentary systemnutritional and metabolic diseasesNuclear ProteinsDNA Methylationmedicine.diseaseProgerinChromatin Assembly and DisassemblyLamin Type AChromatinCell biologySettore BIO/18 - GeneticaMicroRNAsSettore MED/03 - Genetica MedicaMutationHGPS ProgeriachromatinNuclear laminaGeriatrics and GerontologyepigeneticMi-2 Nucleosome Remodeling and Deacetylase ComplexGerontology
researchProduct

On the ubiquitous presence of histone acetyltransferase B in eukaryotes

1985

AbstractHistone acetyltransferase B activity has been found in pea (Pisun sativum) seedlings. The enzyme has been partially purified and it has been found that it is highly specific for H4. The results confirm that histone acetyltransferase B occurs in 3 eukaryotic kingdoms.

educationBiophysicsBiochemistrySativumHistone H1Structural BiologyHistone H2AGeneticsMolecular BiologyPisum sativumchemistry.chemical_classificationbiologyfood and beveragesCell BiologyHistone acetyltransferaseChromatinhumanitiesChromatinHistone acetyltransferase BEnzymeHistone acetylationPCAFBiochemistrychemistryHistone methyltransferasebiology.proteinFEBS Letters
researchProduct

Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

2014

Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regul…

endocrine system diseasesMRNA destabilizationRNA Stabilityp38 mitogen-activated protein kinasesGene ExpressionRNA-binding proteinResveratrolBiologyp38 Mitogen-Activated Protein KinasesMicechemistry.chemical_compoundCell Line TumorStilbenesGene expressionGeneticsAnimalsHumansddc:610RNA Messengerskin and connective tissue diseasesMice KnockoutMessenger RNAGene knockdownExosome Multienzyme Ribonuclease Complexorganic chemicalsAnti-Inflammatory Agents Non-SteroidalGene regulation Chromatin and EpigeneticsRNA-Binding Proteinsfood and beveragesMolecular biology3. Good healthCell biologychemistryResveratrolMutationTrans-ActivatorsPhosphorylationInflammation Mediatorshormones hormone substitutes and hormone antagonistsNucleic Acids Research
researchProduct

Extensive nuclear gyration and pervasive non-genic transcription during primordial germ cell development in zebrafish.

2020

ABSTRACT Primordial germ cells (PGCs) are the precursors of germ cells, which migrate to the genital ridge during early development. Relatively little is known about PGCs after their migration. We studied this post-migratory stage using microscopy and sequencing techniques, and found that many PGC-specific genes, including genes known to induce PGC fate in the mouse, are only activated several days after migration. At this same time point, PGC nuclei become extremely gyrated, displaying general broad opening of chromatin and high levels of intergenic transcription. This is accompanied by changes in nuage morphology, expression of large loci (PGC-expressed non-coding RNA loci, PERLs) that ar…

endocrine systemRNA UntranslatedTranscription GeneticZygotePiwi-interacting RNApiRNABiology03 medical and health sciences0302 clinical medicineGyrationTranscription (biology)Primordial germ cellmedicineAnimalsRNA Small InterferingMolecular BiologyZebrafishGeneZebrafish030304 developmental biologyCell NucleusNuage0303 health sciencesGonadal ridgeurogenital systemNuclear morphologyGene Expression Regulation DevelopmentalDNA-Directed RNA PolymerasesZygotic activationZebrafish Proteinsbiology.organism_classificationChromatinCell biologyUp-Regulationmedicine.anatomical_structureGerm CellsGenetic Loci207FertilizationMutationIntergenic transcriptionDNA Transposable ElementsDNA Intergenic030217 neurology & neurosurgeryGerm cellBiogenesisDevelopmental BiologyResearch ArticleDevelopment (Cambridge, England)
researchProduct

The distributions of protein coding genes within chromatin domains in relation to human disease.

2019

Abstract Background Our understanding of the nuclear chromatin structure has increased hugely during the last years mainly as a consequence of the advances in chromatin conformation capture methods like Hi-C. The unprecedented resolution of genome-wide interaction maps shows functional consequences that extend the initial thought of an efficient DNA packaging mechanism: gene regulation, DNA repair, chromosomal translocations and evolutionary rearrangements seem to be only the peak of the iceberg. One key concept emerging from this research is the topologically associating domains (TADs) whose functional role in gene regulation and their association with disease is not fully untangled. Resul…

lcsh:QH426-470Computational biologyBiologyChromatin structureCell LineChromosome conformation captureOpen Reading FramesGene expressionDatabases GeneticGeneticsEnhancersHumansDiseaseEnhancerMolecular BiologyGeneRegulation of gene expressionHousekeeping genesTopologically associating domainsResearchHuman diseasesTADGenes associated with diseaseHuman geneticsChromatinChromatinHousekeeping geneGene regulationlcsh:GeneticsEnhancer Elements GeneticTranscription Initiation SiteChromatin interactionsEpigeneticschromatin
researchProduct

Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configurati…

2020

mRNA homoeostasis is favoured by crosstalk between transcription and degradation machineries. Both the Ccr4-Not and the Xrn1-decaysome complexes have been described to influence transcription. While Ccr4-Not has been shown to directly stimulate transcription elongation, the information available on how Xrn1 influences transcription is scarce and contradictory. In this study we have addressed this issue by mapping RNA polymerase II (RNA pol II) at high resolution, using CRAC and BioGRO-seq techniques in Saccharomyces cerevisiae. We found significant effects of Xrn1 perturbation on RNA pol II profiles across the genome. RNA pol II profiles at 5ʹ exhibited significant alterations that were com…

mRNA bufferingSaccharomyces cerevisiae ProteinsTranscription Elongation GeneticTranscription elongationPolyadenylationSaccharomyces cerevisiaeMRNA DecayRNA polymerase IISaccharomyces cerevisiaeTranscription elongation03 medical and health sciences0302 clinical medicinemRNA decayTranscription (biology)RNA decay/gene transcription crosstalkGene Expression Regulation FungalNucleosomemRNA decay/gene transcription crosstalkMolecular BiologyXrn1Gene030304 developmental biology0303 health sciencesMessenger RNAbiologyChemistryCell Biologybiology.organism_classificationRNA bufferingmChromatinChromatinCell biologyNucleosomesCrosstalk (biology)3ʹ pre-mRNA processing030220 oncology & carcinogenesisXrn13ʹExoribonucleasesbiology.proteinpre-mRNA processingmRNA Polymerase IITranscriptional Elongation FactorsResearch PaperRNA biology
researchProduct