Search results for "CHROMOPHORE"

showing 10 items of 309 documents

Remote Control by π-Conjugation of the Emissive Properties of Fischer Carbene-BODIPY Dyads.

2016

The synthesis, structure, and complete characterization of mono- and bimetallic dyads joining Fischer carbene complexes and BODIPY chromophores are reported. In these organometallic species, the Fischer carbene complex is attached to the BODIPY moiety through a p-aminophenyl group linked at the C8 carbon atom of the BODIPY core. The photophysical properties, namely the corresponding UV/vis absorption and emission spectra of these new metal-carbene complexes, are analyzed and discussed. It is found that whereas the absorption of the considered dyads strongly resembles that of the parent 4-anilinyl-substituted BODIPY, the fluorescence emission is significantly reduced in these species, very l…

010405 organic chemistryTransition metal carbene complexChromophore010402 general chemistryPhotochemistry01 natural sciencesFluorescence0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryOrganic chemistryMoietyEmission spectrumPhysical and Theoretical ChemistryBODIPYAbsorption (electromagnetic radiation)Bimetallic stripInorganic chemistry
researchProduct

2020

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The chan…

0301 basic medicineGeneral Immunology and MicrobiologyPhytochromeGeneral NeuroscienceMolecular biophysicsGeneral MedicineChromophore010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology0104 chemical sciencesPhotoexcitation03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryStructural biologyFemtosecondBiophysicsSignal transductionBilineLife
researchProduct

Chromophore-Protein Interplay During the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy

2018

Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply two-color step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach …

0301 basic medicineInfrared spectroscopyMolecular Dynamics SimulationBiochemistryCatalysis03 medical and health scienceschemistry.chemical_compoundchromophore-protein interplayColloid and Surface ChemistryBacterial ProteinsSpectroscopy Fourier Transform InfraredPeptide bondta116BiliverdinbiologyPhytochromeHydrogen bondBiliverdineta1182WaterHydrogen BondingDeinococcus radioduransGeneral ChemistryChromophorePhotochemical Processesbiology.organism_classification030104 developmental biologychemistryBiophysicsProtein Conformation beta-StrandDeinococcusPhytochromevalokemiaproteiinitSignal transductionstep-scan FTIR spectroscopyAdenylyl CyclasesJournal of the American Chemical Society
researchProduct

On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome

2018

Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with …

0301 basic medicineModels MolecularCrystallography X-RayBiochemistrybakteeritProtein structurephotoconversionchromophore-binding domainTransferasestructural biologyCRYSTAL-STRUCTURETyrosineDEINOCOCCUS-RADIODURANSbiologyPhytochromeChemistryREARRANGEMENTSProtein Structure and FoldingDeinococcusmutagenesisBinding domainSignal TransductionMODULEPLANT PHYTOCHROMEPhenylalaninefotobiologia03 medical and health sciencesBacterial Proteinsprotein conformationcell signalingprotein structureBACTERIOPHYTOCHROMEMolecular BiologyX-ray crystallographysoluviestintäphytochromeAGP1BINDING DOMAINBinding Sitesta114030102 biochemistry & molecular biologyta1182Deinococcus radioduransCell BiologyChromophorebiology.organism_classificationphotoreceptor030104 developmental biologyStructural biologyFTIRBiophysicsTyrosineproteiinit3111 Biomedicineröntgenkristallografia
researchProduct

Coordination of the biliverdin D-ring in bacteriophytochromes.

2018

Phytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains…

0301 basic medicineModels MolecularStereochemistryProtein ConformationProtein Data Bank (RCSB PDB)General Physics and Astronomyphytochrome proteinsbakteerit03 medical and health scienceschemistry.chemical_compoundProtein structureBacterial ProteinsProteobacteriabiochemical signalsDeinococcusPhysical and Theoretical ChemistryStigmatella aurantiacaBiliverdinBinding SitesbiologyPhytochromeBiliverdineta1182Deinococcus radioduransHydrogen BondingChromophorebiology.organism_classificationPhotochemical ProcessesD-ring030104 developmental biologychemistryproteiinitvalokemiaDeinococcusPhytochromeProtein BindingPhysical chemistry chemical physics : PCCP
researchProduct

2016

AbstractPhytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution d…

0301 basic medicineMultidisciplinaryMaterials science030102 biochemistry & molecular biologyPhytochromeResolution (electron density)Crystal structureChromophoreSACLA03 medical and health sciencesCrystallography030104 developmental biologyProtein structureFemtosecondX-ray crystallographyScientific Reports
researchProduct

Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein

2016

Many biological processes depend on detecting and responding to light. The response is often mediated by a structural change in a protein that begins when absorption of a photon causes isomerization of a chromophore bound to the protein. Pande et al. used x-ray pulses emitted by a free electron laser source to conduct time-resolved serial femtosecond crystallography in the time range of 100 fs to 3 ms. This allowed for the real-time tracking of the trans-cis isomerization of the chromophore in photoactive yellow protein and the associated structural changes in the protein.Science, this issue p. 725A variety of organisms have evolved mechanisms to detect and respond to light, in which the re…

0301 basic medicinePhotoreceptorsTime FactorsPhotoisomerizationLightProtein ConformationPhotochemistryPhotoreceptors MicrobialMYOGLOBINProtein structureMicrobialX-RAY-DIFFRACTIONPHOTOISOMERIZATIONMOTIONSchromophoresta116MultidisciplinarySPECTROSCOPYCrystallographyChemistryPhotochemical ProcessesTime resolved crystallographyTIMEMultidisciplinary SciencesPicosecondFemtosecondphotoactive proteinsScience & Technology - Other Topicsddc:500IsomerizationStereochemistryGeneral Science & TechnologyConjugated systemArticle03 medical and health sciencesBacterial ProteinsIsomerismEXCITATIONx-ray crystallographyPhotonsScience & TechnologyPHOTOCYCLEta114CHROMOPHOREta1182PATHWAYSChromophore030104 developmental biologyfree-electron laserssense organstrans-cis isomerization
researchProduct

Hydrogen Bond Fluctuations Control Photochromism in a Reversibly Photo-Switchable Fluorescent Protein

2015

Reversibly switchable fluorescent proteins (RSFPs) are essential for high-resolution microscopy of biological samples, but the reason why these proteins are photochromic is still poorly understood. To address this problem, we performed molecular dynamics simulations of the fast switching Met159Thr mutant of the RSFP Dronpa. Our simulations revealed a ground state structural heterogeneity in the chromophore pocket that consists of three populations with one, two, or three hydrogen bonds to the phenolate moiety of the chromophore. By means of non-adiabatic quantum mechanics/molecular dynamics simulations, we demonstrated that the subpopulation with a single hydrogen bond is responsible for of…

0301 basic medicinefluorescent proteinsMolecular Dynamics Simulation010402 general chemistryPhotochemistry01 natural sciencesCatalysis03 medical and health sciencesDronpaMolecular dynamicsPhotochromismIsomerismta116structural heterogeneityHydrogen bondChemistryRational designHydrogen BondingGeneral MedicineGeneral ChemistryChromophorePhotochemical Processeslaskennallinen kemiaphotochromismcomputational chemistryFluorescence0104 chemical sciencesLuminescent Proteins030104 developmental biologyQuantum Theoryphoto-isomerizationIsomerizationAngewandte Chemie International Edition
researchProduct

Molecular balance forms of indium phthalocyanines in benzene and pyridine solution

2019

Abstract The electronic absorption spectra of In2Pc3, InPc2 and InPcI solid compounds after dissolvation in one of the most commonly used solvents, i.e.: benzene and pyridine have been measured. In benzene, the molecules of the diindium tripledecker phthalocyanine, In2Pc3, undergoes transformation to ionic couples [InPc]+[InPc2]-, whereas when the InPc2 compound is dissolvated, the molecules of the indium sandwiches, InPc2, remain relatively stable in the solvent. When the In2Pc3 compound is dissolvated in py, the inner Pc(2-) ring of diindium tripledecker phthalocyanine molecule undergoes disjunction and rejection. In the results of it in the solution the couple of chromophores, being in t…

Absorption spectroscopy010405 organic chemistryPyridineOrganic ChemistryIonic bondingBenzeneChromophore010402 general chemistry01 natural sciences0104 chemical sciencesAnalytical ChemistryTransformationInorganic ChemistrySolventchemistry.chemical_compoundCrystallographychemistrySpectrum UV–VisPyridinePhthalocyanineMoleculeBenzeneIndium phthalocyaninesSpectroscopyJournal of Molecular Structure
researchProduct

Intramolecular charge transfer and enhanced quadratic optical non-linearities in push pull polyenes

1997

Abstract Push-pull polyenes, which have an electron-donating group (D) and an electron-withdrawing group (A) grafted on opposite ends of a conjugated polyenic chain, are of particular interest as model compounds for long-distance intramolecular charge transfer (ICT), as well as potent non-linear optical chromophores. Several series of push-pull polyenes of increasing length, combining aromatic donor moieties and various acceptor groups, have been prepared and studied. Their linear and non-linear optical properties have been investigated by performing electro-optical absorption measurements (FOAM) and electric-field-induced second-harmonic generation (EFISH) experiments in solution. Each mol…

Absorption spectroscopyChemistryGeneral Chemical EngineeringGeneral Physics and AstronomyGeneral ChemistryChromophorePhotochemistryMolecular physicsAcceptorDipoleAbsorption bandExcited stateIntramolecular forceBathochromic shiftJournal of Photochemistry and Photobiology A: Chemistry
researchProduct