Search results for "CLIMATE"
showing 10 items of 4934 documents
Understanding deep learning in land use classification based on Sentinel-2 time series
2020
AbstractThe use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims …
Blast waves from violent explosive activity at Yasur Volcano, Vanuatu
2013
[1] Infrasonic and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1–0.3 Hz) signal preceding ~5–6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5–106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments…
Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring
2015
International audience; After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intr…
Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data
2012
River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous…
Enhanced detection of terrestrial gamma-ray flashes by AGILE
2015
At the end of March 2015 the onboard software configuration of the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma-Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration (<100 μs), and part of them has simultaneous association with lightning sfer…
A giant exoplanet orbiting a very-low-mass star challenges planet formation models
2019
Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
2009
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jup…
Oligo-Miocene lacustrine microbial and metazoan buildups from the Limagne Basin (French Massif Central)
2018
The Limagne Basin (French Massif Central) is an extensive continental lacustrine system accommodating microbial and metazoan buildups from Chattian to Aquitanian age. A description of these buildups and their associated biotic components in Grand Gandaillat and Crechy quarries provides insights into their spatio-temporal distribution patterns. Flats, cauliflowers, domes, cones and coalescent columnar morphologies have been identified with a main laminated mesofabric and laminated, columnar, filamentous and caddisfly-coated microfabrics. Two low-gradient margin models emerged based on the changes in the distribution, morphology and size of the microbial and metazoan-rich deposits through tim…
Intra- and inter-annual uranium concentration variability in a Belizean stalagmite controlled by prior aragonite precipitation: A new tool for recons…
2016
Aragonitic speleothems are increasingly utilised as palaeoclimate archives due to their amenability to high precision U–Th dating. Proxy records from fast-growing aragonitic stalagmites, precisely dated to annual timescales, can allow investigation of climatic events occurring on annual or even sub-annual timescales with minimal chronological uncertainty. However, the behaviour of many trace elements, such as uranium, in aragonitic speleothems has not thus far been as well constrained as in calcitic speleothems. Here, we use uranium concentration shifts measured across primary calcite-to-aragonite mineralogical transitions in speleothems to calculate the distribution coefficient of uranium …
Origin of primitive ultra-calcic arc melts at crustal conditions — Experimental evidence on the La Sommata basalt, Vulcano, Aeolian Islands
2016
International audience; To interpret primitive magma compositions in the Aeolian arc and contribute to a better experimental characterization of ultra-calcic arc melts, equilibrium phase relations have been determined experimentally for the La Sommata basalt (Som-1, Vulcano, Aeolian arc). Som-1 (Na2O + K2O = 4.46 wt.%, CaO = 12.97 wt.%, MgO = 8.78 wt.%, CaO/Al2O3 = 1.03) is a reference primitive ne-normative arc basalt with a strong ultra-calcic affinity. The experiments have been performed between 44 and 154 MPa, 1050 and 1150 °C and from NNO + 0.2 to NNO + 1.9. Fluid-present conditions were imposed with H2O–CO2 mixtures yielding melt H2O concentrations from 0.7 to 3.5 wt.%. Phases encount…