Search results for "CLOCKS"
showing 10 items of 45 documents
Thalamic Network Oscillations Synchronize Ontogenetic Columns in the Newborn Rat Barrel Cortex
2013
Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma b…
How is the inner circadian clock controlled by interactive clock proteins?
2015
AbstractMost internationally travelled researchers will have encountered jetlag. If not, working odd hours makes most of us feel somehow dysfunctional. How can all this be linked to circadian rhythms and circadian clocks? In this review, we define circadian clocks, their composition and underlying molecular mechanisms. We describe and discuss recent crystal structures of Drosophila and mammalian core clock components and the enormous impact they had on the understanding of circadian clock mechanisms. Finally, we highlight the importance of circadian clocks for the daily regulation of human/mammalian physiology and show connections to overall fitness, health and disease.
Interference Cancellation for LoRa Gateways and Impact on Network Capacity
2021
In this paper we propose LoRaSyNc (LoRa receiver with SyNchronization and Cancellation), a second generation LoRa receiver that implements Successive Interference Cancellation (SIC) and time synchronization to improve the performance of LoRa gateways. Indeed, the chirp spread spectrum modulation employed in LoRa experiences very high capture probability, and cancelling the strongest signal in case of collisions can significantly improve the cell capacity. An important feature of LoRaSyNc is the ability to track the frequency and clock drifts between the transmitter and receiver, during the whole demodulation of the interfered frame. Due to the use of low-cost oscillators on end-devices, a s…
Copper homeostasis influences the circadian clock in Arabidopsis.
2010
Almost every aspect of plant physiology is influenced by diurnal and seasonal environmental cycles which suggests that biochemical oscillations must be a pervasive phenomenon in the underlying molecular organization. The circadian clock is entrained by light and temperature cycles, and controls a wide variety of endogenous processes that enable plants to anticipate the daily periodicity of environmental conditions. Several previous reports suggest a connection between copper (Cu) homeostasis and the circadian clock in different organisms other than plants. However, the nature of the Cu homeostasis influence on chronobiology remains elusive. Cytosolic Cu content could oscillate since Cu regu…
A morphology-based approach to the evaluation of atrial fibrillation organization.
2007
Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana.
2012
The circadian clock plays an important role in adaptation in time and space by synchronizing changes in physiological, developmental, and behavioral traits of organisms with daily and seasonal changes in their environment. We have studied some features of the circadian activity and clock organization in a northern Drosophila species, Drosophila montana, at both the phenotypic and the neuronal levels. In the first part of the study, we monitored the entrained and free-running locomotor activity rhythms of females in different light-dark and temperature regimes. These studies showed that D. montana flies completely lack the morning activity component typical to more southern Drosophila speci…
Photosensitive Alternative Splicing of the Circadian Clock Gene timeless Is Population Specific in a Cold-Adapted Fly, Drosophila montana.
2018
To function properly, organisms must adjust their physiology, behavior and metabolism in response to a suite of varying environmental conditions. One of the central regulators of these changes is organisms' internal circadian clock, and recent evidence has suggested that the clock genes are also important in the regulation of seasonal adjustments. In particular, thermosensitive splicing of the core clock gene <i>timeless</i> in a cosmopolitan fly, <i>Drosophila melanogaster</i> , has implicated this gene to be involved in thermal adaptation. To further investigate this link we examined the splicing of <i>timeless</i> in a northern malt fly species, <i&…
Oscillatory Dynamics Underlying Perceptual Narrowing of Native Phoneme Mapping from 6 to 12 Months of Age
2016
During the first months of life, human infants process phonemic elements from all languages similarly. However, by 12 months of age, as language-specific phonemic maps are established, infants respond preferentially to their native language. This process, known as perceptual narrowing, supports neural representation and thus efficient processing of the distinctive phonemes within the sound environment. Although oscillatory mechanisms underlying processing of native and non-native phonemic contrasts were recently delineated in 6-month-old infants, the maturational trajectory of these mechanisms remained unclear. A group of typically developing infants born into monolingual English families, …
Bimodal Oscillation Frequencies of Blood Flow in the Inflammatory Colon Microcirculation
2008
Rhythmic changes in blood flow direction have been described in the mucosal plexus of mice with acute colitis. In this report, we studied mice with acute colitis induced either by dextran sodium sulfate or by trinitrobenzenesulfonic acid. Both forms of colitis were associated with blood flow oscillations as documented by fluorescence intravital videomicroscopy. The complex oscillation patterns suggested more than one mechanism for these changes in blood flow. By tracking fluorescent nanoparticles in the inflamed mucosal plexus, we identified two forms of blood flow oscillations within the inflammatory mouse colon. Stable oscillations were associated with a base frequency of approximately 2 …
Subthreshold oscillation of the membrane potential in magnocellular neurones of the rat supraoptic nucleus
2000
The hypothalamic supraoptic nucleus (SON) contains two major populations of magnocellular neurosecretory neurones, producing and secreting vasopressin and oxytocin, respectively (for review see Poulain & Wakerley 1982). Neurones of a subpopulation of supraoptic neurosecretory cells share the capability of generating phasic bursts of action potentials. In these neurones, action potentials are succeeded by a depolarizing afterpotential (DAP; Andrew, 1987; Armstrong et al. 1994; Li et al. 1995). Depending on the discharge frequency, DAPs summate, eventually resulting in the generation of a plateau potential that gives rise to the discharge of a long-lasting train of action potentials. Thus, DA…