Search results for "CMO"
showing 10 items of 145 documents
Giant Magnetoresistance (GMR) Magnetometers
2016
Since its discovering in 1988, the Giant Magnetoresistance (GMR) effect has been widely studied both from the theoretical and the applications points of view. Its rapid development was initially promoted by their extensive use in the read heads of the massive data magnetic storage systems, in the digital world. Since then, novel proposals as basic solid state magnetic sensors have been continuously appearing. Due to their high sensitivity, small size and compatibility with standard CMOS technologies, they have become the preferred choice in scenarios traditionally occupied by Hall sensors. In this chapter, we analyze the main properties of GMR sensors regarding their use as magnetometers. W…
Attitude measurement by artificial vision
2005
The recent development of light and low-cost airborne platforms (microlight, drones, kites, balloons,...) has led to the need for simple and low-cost devices allowing attitude measurement with respect to a reference horizon of the platform itself or of an embedded setting. A theoretical study of the conditions for measuring attitude angles from artificial vision is proposed and an original practical algorithm allowing these measurements to be performed in real time is described. An implementation in a CMOS retina circuit is also presented. These points are illustrated by experiments confirming the feasibility of the device.
Advanced Giant Magnetoresistance (GMR) sensors for Selective-Change Driven (SCD) circuits
2021
Nowadays, bio-inspiration is driving novel sensors designs, beyond vision sensors. By taking advantage of their compatibility with standard CMOS technologies, the integration of giant magneto-resistance (GMR) based magnetic sensors within such event-driven approaches is proposed. With this aim, several topologies of such GMR sensors have been designed, fabricated and characterized. In addition, integrated circuit interfaces of a standard CMOS technology are also proposed. Their suitability for this approach is then demonstrated by means of Cadence IC simulations.
On Approximation of Entropy Solutions for One System of Nonlinear Hyperbolic Conservation Laws with Impulse Source Terms
2010
We study one class of nonlinear fluid dynamic models with impulse source terms. The model consists of a system of two hyperbolic conservation laws: a nonlinear conservation law for the goods density and a linear evolution equation for the processing rate. We consider the case when influx-rates in the second equation take the form of impulse functions. Using the vanishing viscosity method and the so-called principle of fictitious controls, we show that entropy solutions to the original Cauchy problem can be approximated by optimal solutions of special optimization problems.
Nanomagnetic Self-Organizing Logic Gates
2021
The end of Moore's law for CMOS technology has prompted the search for low-power computing alternatives, resulting in several promising proposals based on magnetic logic[1-8]. One approach aims at tailoring arrays of nanomagnetic islands in which the magnetostatic interactions constrain the equilibrium orientation of the magnetization to embed logical functionalities[9-12]. Despite the realization of several proofs of concepts of such nanomagnetic logic[13-15], it is still unclear what the advantages are compared to the widespread CMOS designs, due to their need for clocking[16, 17] and/or thermal annealing [18,19] for which fast convergence to the ground state is not guaranteed. In fact, i…
Laser speckle time-series correlation analysis for bacteria activity detection
2020
The study aims at development and laboratory approbation of non-contact optical technique for early evaluation of microbial activity. Microorganisms’ activity is estimated by laser speckle contrast imaging technique in combination with image processing of obtained time varying speckle patterns. Laser speckle patterns were captured by CMOS sensor during illumination of growing bacteria colonies by low power (<30 mW, 635 nm) stabilized coherent light source. To validate proposed technique and image processing algorithm the vibrio natriegens bacteria are used. After analysis of several different experiments the following results were obtained: In the central part of the colony activity can be …
Twitter comme « corpus » en sciences du langage : questions méthodologiques et pistes de recherche
2017
Doctoral; L’avènement des corpus et des travaux sur corpus en sciences du langage ont amené la discipline à décrire des ressources sans cesse diversifiées, qu’il s’agisse de corpus de référence ou ad hoc. Les formes de communication médiées par ordinateur (computer-mediated communication) n’échappent pas cette tendance et ce d’autant plus qu’il s’agit de données numériques natives. Parmi les différents types recensés à ce jour, cette communication s’intéressera spécifiquement à Twitter et à ses potentialités pour la recherche linguistique.A partir d’un corpus compilé à la Maison des Sciences de l’Homme de Dijon – mais aussi des autres initiatives documentées sur la plateforme Ortolang – il …
The promise of spintronics for unconventional computing
2021
Novel computational paradigms may provide the blueprint to help solving the time and energy limitations that we face with our modern computers, and provide solutions to complex problems more efficiently (with reduced time, power consumption and/or less device footprint) than is currently possible with standard approaches. Spintronics offers a promising basis for the development of efficient devices and unconventional operations for at least three main reasons: (i) the low-power requirements of spin-based devices, i.e., requiring no standby power for operation and the possibility to write information with small dynamic energy dissipation, (ii) the strong nonlinearity, time nonlocality, and/o…
Unsupervised image processing scheme for transistor photon emission analysis in order to identify defect location
2015
International audience; The study of the light emitted by transistors in a highly scaled complementary metal oxide semiconductor (CMOS) integrated circuit (IC) has become a key method with which to analyze faulty devices, track the failure root cause, and have candidate locations for where to start the physical analysis. The localization of defective areas in IC corresponds to a reliability check and gives information to the designer to improve the IC design. The scaling of CMOS leads to an increase in the number of active nodes inside the acquisition area. There are also more differences between the spot’s intensities. In order to improve the identification of all of the photon emission sp…
Numerical Simulation of Thermal Effects in Coupled Optoelectronic Device-circuit Systems
2008
The control of thermal effects becomes more and more important in modern semiconductor circuits like in the simplified CMOS transceiver representation described by U. Feldmann in the above article Numerical simulation of multiscale models for radio frequency circuits in the time domain. The standard approach for modeling integrated circuits is to replace the semiconductor devices by equivalent circuits consisting of basic elements and resulting in so-called compact models. Parasitic thermal effects, however, require a very large number of basic elements and a careful adjustment of the resulting large number of parameters in order to achieve the needed accuracy.