Search results for "COLLIDER"
showing 10 items of 1690 documents
Measurement of the inelastic proton-proton cross-section at √s = 7 TeV with the ATLAS detector
2011
The dependence of the rate of proton–proton interactions on the centre-of-mass collision energy, √s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton–proton interaction cross-section at a centre-of-mass energy, √s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of 60.3±2.1 mb is measured for ξ>5×10[superscript −6], where ξ is ca…
Hard diffraction in photoproduction with Pythia 8
2019
We present a new framework for modeling hard diffractive events in photoproduction, implemented in the general purpose event generator Pythia 8. The model is an extension of the model for hard diffraction with dynamical gap survival in pp and ppbar collisions proposed in 2015, now also allowing for other beam types. It thus relies on several existing ideas: the Ingelman-Schlein approach, the framework for multiparton interactions and the recently developed framework for photoproduction in gamma p, gamma gamma, ep and $e^+e^-$ collisions. The model proposes an explanation for the observed factorization breaking in photoproduced diffractive dijet events at HERA, showing an overall good agreem…
The ATLAS Level-1 Calorimeter Trigger
2008
The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, tau leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 microsecond, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern.
First Measurement of Transverse-Spin-Dependent Azimuthal Asymmetries in the Drell-Yan Process
2017
The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/$c$, $\pi^{-}$ beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/$c^2$ and 8.5 GeV/$c^2$. The observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of Quantum Chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic sc…
Nuclear modification of forward Drell-Yan production at the LHC
2017
Forward Drell-Yan production at high energy can provide important constraints on gluon densities at small $x$, in the saturation regime. In this work we focus on the nuclear modification of this process, which could be measured at the LHC in the near future. For this we employ the color dipole approach, using the optical Glauber model to relate the dipole cross section of a nucleus to the one of a proton. Combining these results with our earlier results for forward $J/\psi$ production, we compute the ratio of the nuclear modification factors of these two processes. This observable was recently suggested as a way to distinguish between initial and final state effects in forward particle prod…
Erratum to: DYTurbo: fast predictions for Drell–Yan processes
2020
The European physical journal / C 80(5), 440 (2020). doi:10.1140/epjc/s10052-020-7972-0
DYTurbo: fast predictions for Drell–Yan processes
2019
The European physical journal / C 80(5), 251 (2020). doi:10.1140/epjc/s10052-020-7757-5
Tevatron Run II combination of the effective leptonic electroweak mixing angle
2018
The Ministry of Science and Innovation and the Consolider-Ingenio 2010 Program and the European Union community Marie Curie Fellowship Contract No. 302103.
Unveiling the strong interaction among hadrons at the LHC
2020
One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices1,2. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons3–6 and so high-quality measurements exist only for hadrons containing up and down quarks7. Here we demonstrate that measuring correlations in the momentum space between hadron pairs8–12 produced in ultrarelativistic…
The real part of the elastic-scattering amplitude at the $$S\bar ppS$$ and predictions at LHC and SSCand predictions at LHC and SSC
1994
A precise measurement of\(\bar pp\) elastic scattering in the Coulomb strong-interaction interference region was performed at the CERN\(S\bar ppS\) Collider at a centre-of-mass energy of 541 GeV. The ratio of the real-to-imaginary part of the forward elastic-scattering amplitude was found to be ρ=0.135±0.015. The slope of the exponential fall-off of the strong-interaction part was also measured to beb=15.5±0.1 GeV−2. Using this new result, an overall fit to the data on the total cross-section and on the real part for\(\bar pp\) and pp was performed using dispersion relations. Numerical predictions are presented for total cross-sections at LHC and SSC energies.