Search results for "COLOR GLASS CONDENSATE"

showing 6 items of 26 documents

Structure of longitudinal chromomagnetic fields in high energy collisions

2014

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.

We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial like structure over distance scales of oder the saturation scale. At later times universal scaling emerges at large distances for all ensembles with a nontrivial critical exponent. Finally we compare the resulats for the Wilson loop to the two-point correlator of magnetic fields. (C) 2014 The Authors. Published by Elsevier BV This is an open access article under the CC BY licenseNuclear and High Energy PhysicsWilson loopLARGE NUCLEINuclear TheoryField (physics)FOS: Physical sciences114 Physical sciences01 natural sciencesColor-glass condensateRENORMALIZATION-GROUPNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSHigh Energy Physics - Phenomenology (hep-ph)Light cone0103 physical sciencesSCATTERINGGauge theory010306 general physicsSMALL-XEffective actionPhysicsCORRELATORSta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATERenormalization groupEVOLUTIONJIMWLK EQUATIONHigh Energy Physics - PhenomenologySATURATIONQuantum electrodynamicsCritical exponentPhysics Letters B
researchProduct

Evolution of fluctuations in the initial state of heavy-ion collisions from RHIC to LHC

2019

Fluctuations in the initial state of heavy-ion collisions are larger at RHIC energy than at LHC energy. This fact can be inferred from recent measurements of the fluctuations of the particle multiplicities and of elliptic flow performed at the two different energies. We show that an analytical description of the initial energy-density field and its fluctuations motivated by the color glass condensate (CGC) effective theory predicts and quantitatively captures the measured energy evolution of these observables. The crucial feature is that fluctuations in the CGC scale like the inverse of the saturation scale of the nuclei.

heavy ion: scatteringScale (ratio)Field (physics)Nuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesColor-glass condensateHigh Energy Physics - ExperimentNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsinitial stateNuclear ExperimentNuclear ExperimentBrookhaven RHIC CollPhysicsLarge Hadron Collider010308 nuclear & particles physicsfluctuationelliptic flowparticle: multiplicityElliptic flowObservableHigh Energy Physics - PhenomenologyCERN LHC Coll[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensateParticlescale: saturation
researchProduct

Saturation and forward jets in proton-lead collisions at the LHC

2019

We investigate the forward-jet energy spectrum within the Color Glass Condensate framework at 5 TeV center-of-mass energy. In particular, we focus on the kinematic range covered by the CMS-CASTOR calorimeter. We show that our saturation-model calculations are compatible with the CASTOR measurements and that to optimally reproduce the data, effects of multi-parton interactions need to be included. We predict a significant nuclear suppression - reaching down to 50% at the lowest considered jet energies $E_{\rm jet} \sim 500 \, {\rm GeV}$.

nucl-thNuclear TheoryRAPIDITIESAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNUCLEARhiukkasfysiikka01 natural sciences7. Clean energy114 Physical sciencesColor-glass condensateNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEnergy spectrumJ/PSI PRODUCTION010306 general physicsSaturation (magnetic)Nuclear theoryINELASTIC EP SCATTERINGParticle Physics - PhenomenologyPhysicsLarge Hadron Collider010308 nuclear & particles physicsCOLOR GLASS CONDENSATEhep-phHADRON-PRODUCTIONDEUTERON-GOLD COLLISIONSHigh Energy Physics - PhenomenologyNuclear Physics - TheoryHigh Energy Physics::Experiment
researchProduct

On the use of a running coupling in the calculation of forward hadron production at next-to-leading order

2019

saturationcolor glass condensatehiukkasfysiikka
researchProduct

One-loop corrections to light cone wave functions: the dipole picture DIS cross section

2018

We develop methods needed to perform loop calculations in light cone perturbation theory using a helicity basis, refining the method introduced in our earlier work. In particular this includes implementing a consistent way to contract the four-dimensional tensor structures from the helicity vectors with d-dimensional tensors arising from loop integrals, in a way that can be fully automatized. We demonstrate this explicitly by calculating the one-loop correction to the virtual photon to quark-antiquark dipole light cone wave function. This allows us to calculate the deep inelastic scattering cross section in the dipole formalism to next-to-leading order accuracy. Our results, obtained using …

small-xNuclear TheoryGeneral Physics and AstronomyVirtual particleFOS: Physical scienceshiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)Dimensional regularizationHigh Energy Physics - Phenomenology (hep-ph)Light cone0103 physical sciencesTensorHelicity basis010306 general physicskvanttifysiikkaPhysicsDISta114010308 nuclear & particles physicsHelicityLoop integralQCDEVOLUTIONlight-cone perturbation theoryDipoleHigh Energy Physics - PhenomenologyQuantum electrodynamicsREGULARIZATIONcolor glass condensate
researchProduct

JIMWLK and beyond: From concepts to observables

2016

Volume: 112 Host publication title: 6th International Conference on Physics Opportunities at an Electron-Ion Collider The Color Glass Condensate and its associated evolution equation, the JIMWLK equation have applications to many observables far beyond totally inclusive observables. The phenomenology is so rich that little has been done to explore beyond scaling behavior of correlators. We show first examples that exemplify the considerations necessary to access additional information both experimentally and theoretically and demonstrate that the Wilson line correlators appearing throughout make it imperative to consistently take into account that one is dealing with correlators of group el…

ta114Operations research010308 nuclear & particles physicsComputer sciencePhysicsQC1-999scalingCOLOR GLASS CONDENSATEObservable114 Physical sciences01 natural sciencesSTATESMALL X EVOLUTIONColor-glass condensateWilson loopTheoretical physicsODDERONevolution equation0103 physical sciencesEvolution equationcolor glass condensate010306 general physicsScalingN-CEPJ Web of Conferences
researchProduct