Search results for "CONDENSATE"
showing 10 items of 208 documents
The importance of kinematic twists and genuine saturation effects in dijet production at the Electron-Ion Collider
2021
We compute the differential yield for quark anti-quark dijet production in high-energy electron-proton and electron-nucleus collisions at small $x$ as a function of the relative momentum $\boldsymbol{P}_\perp$ and momentum imbalance $\boldsymbol{k}_\perp$ of the dijet system for different photon virtualities $Q^2$, and study the elliptic and quadrangular anisotropies in the relative angle between $\boldsymbol{P}_\perp$ and $\boldsymbol{k}_\perp$. We review and extend the analysis in [1], which compared the results of the Color Glass Condensate (CGC) with those obtained using the transverse momentum dependent (TMD) framework. In particular, we include in our comparison the improved TMD (ITMD…
Linearly polarized gluons and axial charge fluctuations in the glasma
2018
We calculate of the one- and two-point correlation functions of the energy density and the divergence of the Chern-Simons current in the nonequilibrium Glasma state formed in a high-energy nuclear collision. We show that the latter depends on the difference of the total and linearly polarized gluon transverse momentum distributions. Since the divergence of the Chern-Simons current provides the source of axial charge, we infer information about the statistical properties of axial charge production at early times. We further develop a simple phenomenological model to characterize axial charge distributions in terms of distributions of the energy density.
Tracing the origin of azimuthal gluon correlations in the color glass condensate
2016
We examine the origins of azimuthal correlations observed in high energy proton-nucleus collisions by considering the simple example of the scattering of uncorrelated partons off color fields in a large nucleus. We demonstrate how the physics of fluctuating color fields in the color glass condensate (CGC) effective theory generates these azimuthal multiparticle correlations and compute the corresponding Fourier coefficients v_n within different CGC approximation schemes. We discuss in detail the qualitative and quantitative differences between the different schemes. We will show how a recently introduced color field domain model that captures key features of the observed azimuthal correlati…
Multiplicity distributions and long range rapidity correlations
2010
The physics of the initial conditions of heavy ion collisions is dominated by the nonlinear gluonic interactions of QCD. These lead to the concepts of parton saturation and the Color Glass Condensate (CGC). We discuss recent progress in calculating multi-gluon correlations in this framework, prompted by the observation that these correlations are in fact easier to compute in a dense system (nucleus-nucleus) than a dilute one (proton-proton).
Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all
2016
This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics and, in particular, the focused ten-week program on "Gluons and quark sea a…
Particle Production in the Color Class Condensate: from electron-proton DIS to proton-nucleus collisions
2013
We study single inclusive hadron production in proton-proton and proton-nucleus collisions in the CGC framework. The parameters in the calculation are obtained by fitting electron-proton deep inelastic scattering data. The obtained dipole-proton amplitude is generalized to dipole-nucleus scattering without any additional nuclear parameters other than the Woods-Saxon distribution. We show that it is possible to use an initial condition without an anomalous dimension and still obtain a good description of the HERA inclusive cross section and LHC single particle production measurements. We argue that one must consistently use the proton transverse area as measured by a high virtuality probe in…
Azimuthal harmonics of color fields in a high energy nucleus
2015
Recent experimental results have revealed a surprisingly rich structure of multiparticle azimuthal correlations in high energy proton-nucleus collisions. Final state collective effects can be responsible for many of the observed effects, but it has recently been argued that a part of these correlations are present already in the wavefunctions of the colliding particles. We evaluate the momentum space 2-particle cumulant azimuthal anisotropy coefficients v_n{2}, n=2,3,4 from fundamental representation Wilson line distributions describing the high energy nucleus. These would correspond to the flow coefficients in very forward proton nucleus scattering. We find significant differences beteen W…
On the use of a running coupling in the calculation of forward hadron production at next-to-leading order
2018
We study a puzzle raised recently regarding the running coupling prescription used in the calculation of forward particle production in proton-nucleus collisions at next-to-leading order: using a coordinate space prescription which is consistent with the one used in the high energy evolution of the target leads to results which can be two orders of magnitude larger than the ones obtained with a momentum space prescription. We show that this is an artefact of the Fourier transform involved when passing between coordinate and momentum space and propose a new coordinate space prescription which avoids this problem.
Dipole amplitude with uncertainty estimate from HERA data and applications in Color Glass Condensate phenomenology
2014
We determine the initial condition for the small-x evolution equation (BK) from the HERA deep inelastic scattering data using a new parametrization that also keeps the unintegrated gluon distribution positive. The obtained dipole amplitude and its uncertainty estimate can be used to compute single inclusive particle production in proton-proton and proton-nucleus collisions. We argue that one has to use consistently the proton transverse area measured in DIS and the total inelastic cross section when calculating the single inclusive cross section. This leads to a midrapidity nuclear modification factor RpA that approaches unity at large transverse momentum, independently of the center-of-mas…
Heavy quark impact factor and the single bottom production at the LHC
2014
Grigorios Chachamis Instituto de Fisica Corpuscular, Universitat de Valencia – Consejo Superior de Investigaciones Cientificas, Parc Cientific, E-46980 Paterna (Valencia), Spain E-mail: grigorios.chachamis@ific.uv.es Michal Deak∗ Instituto de Fisica Corpuscular, Universitat de Valencia – Consejo Superior de Investigaciones Cientificas, Parc Cientific, E-46980 Paterna (Valencia), Spain E-mail: michal.deak@ific.uv.es