Search results for "CONDENSATION"

showing 10 items of 468 documents

How Do Droplets Depend on the System Size? Droplet Condensation and Nucleation in Small Simulation Cells

2003

Using large scale grandcanonical Monte Carlo simulations in junction with a multicanonical reweighting scheme we investigate the liquid-vapor transition of a Lennard—Jones fluid. Particular attention is focused on the free energy of droplets and the transition between different system configurations as the system tunnels between the vapor and the liquid state as a function of system size. The results highlight the finite size dependence of droplet properties in the canonical ensemble and free energy barriers along the path from the vapor to the liquid in the grandcanonical ensemble.

Condensed Matter::Soft Condensed MatterPhysics::Fluid DynamicsCanonical ensembleLiquid stateMaterials scienceScale (ratio)Monte Carlo methodCondensationNucleationMechanicsSize dependence
researchProduct

Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

2018

Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM …

ConvectionAtmospheric ScienceMeteorology010504 meteorology & atmospheric sciences0207 environmental engineeringparticle production02 engineering and technology010501 environmental sciencesAtmospheric sciences01 natural sciencesAtmosphereTropospherelcsh:Chemistryddc:550PrecipitationWolkenphysik020701 environmental engineeringAerosol0105 earth and related environmental sciencesChemistryCondensationAtmosphärische Spurenstoffelcsh:QC1-999AerosolTrace gasEarth scienceslcsh:QD1-99913. Climate actionupper troposphereParticlelcsh:Physics
researchProduct

Definition of "banner clouds" based on time lapse movies

2007

Abstract. Banner clouds appear on the leeward side of a mountain and resemble a banner or a flag. This article provides a comprehensive definition of "banner clouds". It is based primarily on an extensive collection of time lapse movies, but previous attempts at an explanation of this phenomenon are also taken into account. The following ingredients are considered essential: the cloud must be attached to the mountain but not appear on the windward side; the cloud must originate from condensation of water vapour contained in the air (rather than consist of blowing snow); the cloud must be persistent; and the cloud must not be of convective nature. The definition is illustrated and discussed …

ConvectionAtmospheric ScienceMeteorologybusiness.industryCondensationBannerCloud computingBlowing snowbusinessWater vaporGeologyFlag (geometry)Atmospheric Chemistry and Physics
researchProduct

Cloud droplet formation at the base of tropical convective clouds: closure between modeling and measurement results of ACRIDICON–CHUVA

2021

Aerosol–cloud interactions contribute to the large uncertainties in current estimates of climate forcing. We investigated the effect of aerosol particles on cloud droplet formation by model calculations and aircraft measurements over the Amazon and over the western tropical Atlantic during the ACRIDICON–CHUVA campaign in September 2014. On the HALO (High Altitude Long Range Research) research aircraft, cloud droplet number concentrations (Nd) were measured near the base of clean and polluted growing convective cumuli using a cloud combination probe (CCP) and a cloud and aerosol spectrometer (CAS-DPOL). An adiabatic parcel model was used to perform cloud droplet number closure studies for fl…

ConvectionAtmospheric ScienceRange (particle radiation)010504 meteorology & atmospheric sciencesSpectrometerPhysicsQC1-999Radiative forcingTropical Atlantic010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesCondensation particle counterAerosolChemistry13. Climate actionComputer Science::Programming LanguagesEnvironmental science[CHIM]Chemical Sciences14. Life underwaterAdiabatic processQD1-999Physics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

2015

Abstract. A recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. The integrated concentration …

ConvectionAtmospheric ScienceRange (particle radiation)MicrophysicsMeteorologyTRACEREnvironmental scienceCloud condensation nucleiAtmospheric modelPrecipitationAtmospheric sciencesAerosolAtmospheric Chemistry and Physics
researchProduct

A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part III: The Uptake, Redistribution, and Deposition of (NH4)2SO4Particles by a Con…

1988

Abstract Our model for the scavenging of aerosol particles has been coupled with the two-dimensional form of the convective cloud model of Clark and Collaborators. The combined model was then used to simulate a convective warm cloud for the meteorological situation which existed at 1100 LST 12 July 1985 over Hawaii; assuming an aerosol size distribution of maritime number concentration and of mixed composition with (NH4)2SO4 as the soluble compound. A shallow model cloud developed 26 min after the onset of convection leading to moderate rain which began after 45 min and ended after 60 min. Various parameters which characterize the dynamics and micophysics of the cloud, as well as the scaven…

ConvectionAtmospheric ScienceWater massMeteorologybusiness.industryCloud computingAtmospheric sciencesAerosolLiquid water contentEnvironmental scienceCloud condensation nucleiRedistribution (chemistry)businessScavengingJournal of the Atmospheric Sciences
researchProduct

Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign

2017

The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S), at cloud base alongside more traditional parameterizations connecting NCCN(S) with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP), a cloud and aerosol spectrometer (CAS-DPOL), and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs) and the…

ConvectionAtmospheric Sciencecould condenstion nuclei010504 meteorology & atmospheric sciencesMeteorologysupersaturationCloud computing010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud baseCloud condensation nucleicloudWolkenphysikAdiabatic processupdraftAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesbusiness.industryDrop (liquid)CASlcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceHalobusinesslcsh:Physics
researchProduct

Cloud droplet number closure for tropical convective clouds during the ACRIDICON–CHUVA campaign

2021

The main objective of the ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the Global Precipitation measurements) campaign in September 2014 was the investigation of aerosol-cloud-interactions in the Amazon Basin. Cloud properties near cloud base of growing convective cumuli were characterized by cloud droplet size distribution measurements using a cloud combination probe (CCP) and a cloud and aerosol spectrometer (CAS-DPOL). In the current study, an adiabatic parcel model was used to perform cloud droplet number (N…

ConvectionParticle numberaerosolFluid parcelAtmospheric sciencesCondensation particle counterAerosolcloud dropletsCloud baseEnvironmental scienceParticlePrecipitationcloud probePhysics::Atmospheric and Oceanic Physics
researchProduct

Impacts of Varying Concentrations of Cloud Condensation Nuclei on Deep Convective Cloud Updrafts—A Multimodel Assessment

2021

AbstractThis study presents results from a model intercomparison project, focusing on the range of responses in deep convective cloud updrafts to varying cloud condensation nuclei (CCN) concentrations among seven state-of-the-art cloud-resolving models. Simulations of scattered convective clouds near Houston, Texas, are conducted, after being initialized with both relatively low and high CCN concentrations. Deep convective updrafts are identified, and trends in the updraft intensity and frequency are assessed. The factors contributing to the vertical velocity tendencies are examined to identify the physical processes associated with the CCN-induced updraft changes. The models show several c…

Convection[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceBuoyancy010504 meteorology & atmospheric sciencesPerturbation (astronomy)engineering.materialAtmospheric sciences01 natural sciences010305 fluids & plasmasTroposphere13. Climate action0103 physical sciencesConvective cloudengineeringCloud condensation nucleiEnvironmental scienceIntensity (heat transfer)Pressure gradient0105 earth and related environmental sciences
researchProduct

Oxidovanadium(V) Complexes with Aminoethanol Bis(phenolate) [O,N,O,O] Ligands: Preparations, Structures, N-Dealkylation and Condensation Reactions

2011

The reactions between [VO(acac)2] (acac– = acetylacetonate ion) or [VO(OPr)3] and trianionic tetradentate N,N-bis(2-methylene-4,6-alkylphenolate)aminoethanolate ligands, [L13– (4,6-dimethyl), L23– (4-methyl, 6-tert-butyl), L33– (4-tert-butyl, 6-methyl), L43– (4,6-di-tert-butyl)], afford mononuclear complexes [VO(L1)] (1) and [VO(L2)] (2) with a trigonal bipyramidal coordination sphere around the VV ion, or dinuclear octahedral complexes [V2O2(L3)2] (3) and [V2O2(L4)2] (4). In methanol an adduct with the formula [VO(L1)(MeOH)]·1/2MeOH (5) is obtained. According to multinuclear NMR spectroscopy all those complexes have a mononuclear structure in CDCl3 solutions. In wet polar solvents complex …

Coordination sphereLigandInorganic chemistryEtherNuclear magnetic resonance spectroscopyCondensation reactionMedicinal chemistryAdductInorganic ChemistryTrigonal bipyramidal molecular geometrychemistry.chemical_compoundchemistryAcetonitrileta116Eur. J. Inorg. Chem.
researchProduct