Search results for "CONDITIONING"

showing 10 items of 632 documents

Neurons in the pigeon caudolateral nidopallium differentiate Pavlovian conditioned stimuli but not their associated reward value in a sign-tracking p…

2016

AbstractAnimals exploit visual information to identify objects, form stimulus-reward associations, and prepare appropriate behavioral responses. The nidopallium caudolaterale (NCL), an associative region of the avian endbrain, contains neurons exhibiting prominent response modulation during presentation of reward-predicting visual stimuli, but it is unclear whether neural activity represents valuation signals, stimulus properties, or sensorimotor contingencies. To test the hypothesis that NCL neurons represent stimulus value, we subjected pigeons to a Pavlovian sign-tracking paradigm in which visual cues predicted rewards differing in magnitude (large vs. small) and delay to presentation (s…

0301 basic medicineTelencephalonVisual perceptiongenetic structuresPhotic StimulationReward valueConditioning ClassicalStimulus (physiology)Synaptic TransmissionArticleDiscrimination Learning03 medical and health sciences0302 clinical medicineRewardmedicineReaction TimeAnimalsDiscrimination learningColumbidaeSensory cueNeuronsMultidisciplinaryBehavior AnimalCerebrumElectrophysiological Phenomena030104 developmental biologymedicine.anatomical_structureNidopalliumCuesPsychologyNeuroscience030217 neurology & neurosurgeryPhotic StimulationScientific Reports
researchProduct

Effects of muscular dystrophy, exercise and blocking activin receptor IIB ligands on the unfolded protein response and oxidative stress

2016

Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, …

0301 basic medicineX-Box Binding Protein 1Activin Receptors Type IIEukaryotic Initiation Factor-2MyostatinUPRBiochemistryMiceeIF-2 KinaseThioredoxinsSirtuin 1ENDOPLASMIC-RETICULUM STRESSDISULFIDE-ISOMERASEPhosphorylationta315Endoplasmic Reticulum Chaperone BiPHeat-Shock ProteinsIN-VIVOta3141Activin receptorMOUSE MODELER STRESSEndoplasmic Reticulum Stress3. Good healthmedicine.anatomical_structuremyostatinPRESERVES MUSCLE FUNCTIONER-stressSKELETAL-MUSCLEmdxSignal TransductionEXPRESSIONmedicine.medical_specialtyXBP1MDX MICEBiologyProtein Serine-Threonine Kinases03 medical and health sciencesPhysiology (medical)Internal medicineHeat shock proteinPhysical Conditioning AnimalEndoribonucleasesmedicineAnimalsHumansRNA MessengerMuscle SkeletalSkeletal muscleMyostatinGENEActivating Transcription Factor 6Immunoglobulin Fc FragmentsMuscular Dystrophy DuchenneDisease Models Animal030104 developmental biologyProteostasisEndocrinologyGene Expression RegulationUnfolded protein responsebiology.proteinMice Inbred mdxProteostasisUnfolded Protein Response3111 BiomedicineCarrier ProteinsACVR2B
researchProduct

A new “sudden fright paradigm” to explore the role of (epi)genetic modulations of the DAT gene in fear-induced avoidance behavior

2020

Alterations in dopamine (DA) reuptake are involved in several psychiatric disorders whose symptoms can be investigated in knock out rats for the DA transporter (DAT-KO). Recent studies evidenced the role of epigenetic DAT modulation in depressive-like behavior. Accordingly, we used heterozygous (HET) rats born from both HET parents (termed MIX-HET), compared to HET rats born from WT-mother and KO-father (MAT-HET), implementing the role of maternal care on DAT modulation. We developed a "sudden fright" paradigm (based on dark-light test) to study reaction to fearful inputs in the DAT-KO, MAT-HET, MIX-HET, and WT groups. Rats could freely explore the whole 3-chambers apparatus; then, they wer…

0301 basic medicineanimal structuresEmotionsStimulus (physiology)Epigenesis GeneticReuptakechoice behavior03 medical and health sciencesBehavioral Neuroscience0302 clinical medicineDopamineDAT-KO ratAvoidance LearningGeneticsmedicineAnimalsFear conditioningEpigeneticsprefrontal cortex.Prefrontal cortexdopamine transporterDopamine transporterDopamine Plasma Membrane Transport ProteinsBehavior AnimalbiologyFearfear conditioningRatsDisease Models Animal030104 developmental biologyNeurologyAttention Deficit Disorder with Hyperactivitybiology.proteinSettore BIO/14 - Farmacologiaconditioned preferenceHistone deacetylaseNeuroscience030217 neurology & neurosurgerymedicine.drug
researchProduct

Pre-imaginal conditioning alters adult sex pheromone response in Drosophila

2018

https://peerj.com/articles/5585/#supplemental-information; International audience; Pheromones are chemical signals that induce innate responses in individuals of the same species that may vary with physiological and developmental state. In Drosophila melanogaster, the most intensively studied pheromone is 11-cis-vaccenyl acetate (cVA), which is synthezised in the male ejaculatory bulb and is transferred to the female during copulation. Among other effects, cVA inhibits male courtship of mated females. We found that male courtship inhibition depends on the amount of cVA and this effect is reduced in male flies derived from eggs covered with low to zero levels of cVA. This effect is not obser…

0301 basic medicinecis-vaccenyl acetatevaccenylacétatemedia_common.quotation_subjectparade sexuelle[SDV]Life Sciences [q-bio]lcsh:MedicineGeneral Biochemistry Genetics and Molecular BiologyCourtshipAndrology03 medical and health sciencespre-imaginal conditioningBiologie animalecourtship inhibition[CHIM]Chemical SciencesDrosophilaCis-vaccenyl acetatemedia_commonAnimal biologyLarvabiologyGeneral Neuroscienceplasticité[SDV.BA]Life Sciences [q-bio]/Animal biologylcsh:RNeurosciences[SDV.BDLR]Life Sciences [q-bio]/Reproductive BiologyGeneral Medicinebiology.organism_classificationcis-vaccenyl acetate;courtship inhibition;plasticity;pre-imaginal conditioninginhibition030104 developmental biologySex pheromoneNeurons and CognitionplasticityPheromoneConditioningdéveloppement préimaginalDrosophila melanogasterGeneral Agricultural and Biological Sciences
researchProduct

Astrocytic Ephrin-B1 Controls Synapse Formation in the Hippocampus During Learning and Memory

2020

Astrocytes play a fundamental role in synapse formation, pruning, and plasticity, which are associated with learning and memory. However, the role of astrocytes in learning and memory is still largely unknown. Our previous study showed that astrocyte-specific ephrin-B1 knock-out (KO) enhanced but ephrin-B1 overexpression (OE) in hippocampal astrocytes impaired contextual memory recall following fear conditioning. The goal of this study was to understand the mechanism by which astrocytic ephrin-B1 influences learning; specifically, learning-induced remodeling of synapses and dendritic spines in CA1 hippocampus using fear-conditioning paradigm. While we found a higher dendritic spine density …

0301 basic medicinecontextual memoryDendritic spinehippocampus1.1 Normal biological development and functioningeducationHippocampusBiologyHippocampal formationBasic Behavioral and Social Sciencelcsh:RC321-571Synapse03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineastrocyteUnderpinning researchsynapseBehavioral and Social Sciencemedicineephrin-B1Fear conditioninglcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchRecalldendritic spineNeurosciencesCell BiologySpine (zoology)030104 developmental biologymedicine.anatomical_structureMental Healthnervous systemNeurologicalBiochemistry and Cell BiologyNeuroscience030217 neurology & neurosurgeryAstrocyteNeuroscienceFrontiers in Synaptic Neuroscience
researchProduct

Mechanisms Underlying Memory Consolidation by Adult-Born Neurons During Sleep

2020

The mammalian hippocampus generates new neurons that incorporate into existing neuronal networks throughout the lifespan, which bestows a unique form of cellular plasticity to the memory system. Recently, we found that hippocampal adult-born neurons (ABNs) that were active during learning reactivate during subsequent rapid eye movement (REM) sleep and provided causal evidence that ABN activity during REM sleep is necessary for memory consolidation. Here, we describe the potential underlying mechanisms by highlighting distinct characteristics of ABNs including decoupled firing from local oscillations and ability to undergo profound synaptic remodeling in response to experience. We further di…

0301 basic medicinehippocampusMini Reviewtheta oscillationHippocampusEngramBiologyHippocampal formationOptogeneticslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineFear conditioningoptogeneticslcsh:Neurosciences. Biological psychiatry. Neuropsychiatrysynaptic plasticityNeurogenesismemory consolidation030104 developmental biologyCellular NeuroscienceSynaptic plasticitycalcium-imagingMemory consolidationREM sleepadult-neurogenesisNeuroscience030217 neurology & neurosurgeryFrontiers in Cellular Neuroscience
researchProduct

Monitoring of system conditioning after blank injections in untargeted UPLC-MS metabolomic analysis

2019

AbstractUltra-performance liquid chromatography – mass spectrometry (UPLC-MS) is widely used for untargeted metabolomics in biomedical research. To optimize the quality and precision of UPLC-MS metabolomic analysis, evaluation of blank samples for the elimination of background features is required. Although blanks are usually run either at the beginning or at the end of a sequence of samples, a systematic analysis of their effect of the instrument performance has not been properly documented. Using the analysis of two common bio-fluids (plasma and urine), we describe how the injection of blank samples within a sequence of samples may affect both the chromatographic and MS detection performa…

0301 basic medicinelcsh:MedicineUrineMass spectrometryBlankMass SpectrometryArticlePlasma03 medical and health sciences0302 clinical medicineMetabolomicsHumansMetabolomicslcsh:ScienceChromatography High Pressure LiquidPrincipal Component AnalysisMultidisciplinaryChromatographyChemistrylcsh:RData acquisition030104 developmental biologyUntargeted metabolomicsDetection performanceConditioninglcsh:QUplc ms ms030217 neurology & neurosurgeryScientific Reports
researchProduct

The potential role of mitochondrial ATP synthase inhibitory factor 1 (IF1) in coronary heart disease: a literature review

2017

Cardiovascular disease (CVD) is the leading cause of death worldwide, and so the search for innovative and accurate biomarkers for guiding prevention, diagnosis, and treatment is a valuable clinical and economic endeavor. Due to a recent findings that the serum concentration of mitochondrial ATP synthase inhibitory factor 1 (IF1) is an independent prognostic factor in patients with coronary heart disease (CHD), we reviewed the role of this protein in myocardial ischemic preconditioning, its correlation to plasma high density lipoprotein (HDL), the predictive potential in patients with CHD, and its interplay with angiogenesis. IF1 has been positively correlated with plasma HDL-cholesterol, a…

0301 basic medicinemedicine.medical_specialtyClinical chemistryAngiogenesisEndocrinology Diabetes and MetabolismInhibitory factor 1Clinical BiochemistryHigh density lipoproteinCoronary DiseaseClinical nutritionDiseaseReview030204 cardiovascular system & hematologyBioinformaticsMitochondrial Proteins03 medical and health scienceschemistry.chemical_compoundAngiogenesis; Cardiovascular disease; High density lipoprotein; Inhibitory factor 10302 clinical medicineEndocrinologyHigh-density lipoproteinInternal medicineMedicineHumansCause of deathBiochemistry medicalbiologybusiness.industryBiochemistry (medical)ProteinsCardiovascular diseaseMitochondria030104 developmental biologyEndocrinologychemistrybiology.proteinIschemic preconditioningApolipoprotein A1AngiogenesisbusinessLipids in Health and Disease
researchProduct

2016

In humans, the amount of spinal homonymous recurrent inhibition during voluntary contraction is usually assessed by using a peripheral nerve stimulation paradigm. This method consists of conditioning the maximal M-wave (SM stimulus) with prior reflex stimulation (S1), with 10 ms inter-stimulus interval (ISI). The decrease observed between unconditioned (S1 only) and conditioned (S1+SM) reflex size is then attributed to recurrent inhibition. However, during a voluntary contraction, a superimposed SM stimulation leads to a maximal M-wave followed by a voluntary (V) wave at similar latency than the H-reflex. This wave can therefore interfere with the conditioned H-reflex when two different sti…

0301 basic medicinemedicine.medical_specialtyMultidisciplinarymedicine.diagnostic_testbusiness.industryStimulationElectromyographyStimulus (physiology)Surgery03 medical and health sciences030104 developmental biology0302 clinical medicineEndocrinologyVoluntary contractionInternal medicinemedicineReflexFunctional electrical stimulationConditioningmedicine.symptombusiness030217 neurology & neurosurgeryMuscle contractionPLOS ONE
researchProduct

Evaluation of an Antioxidant and Anti-inflammatory Cocktail Against Human Hypoactivity-Induced Skeletal Muscle Deconditioning

2020

International audience; Understanding the molecular pathways involved in the loss of skeletal muscle mass and function induced by muscle disuse is a crucial issue in the context of spaceflight as well as in the clinical field, and development of efficient countermeasures is needed. Recent studies have reported the importance of redox balance dysregulation as a major mechanism leading to muscle wasting. Our study aimed to evaluate the effects of an antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 mu g of selenium, and 2.1 g of omega-3) in the prevention of muscle deconditioning induced by long-term inactivity. The study consisted of 60 days of hypoactivi…

0301 basic medicinemedicine.medical_specialtyPhysiologymedicine.medical_treatment[SDV]Life Sciences [q-bio]Context (language use)Sciences du Vivant [q-bio]/Médecine humaine et pathologieBed restmedicine.disease_causelcsh:Physiology03 medical and health sciencesSciences du Vivant [q-bio]/Autre [q-bio.OT]0302 clinical medicineAtrophyDeconditioningInternal medicinePhysiology (medical)medicineoxidative stresscell signalingWastingOriginal Research[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologylcsh:QP1-981business.industrySkeletal musclemuscle wastingmedicine.disease3. Good health[SDV] Life Sciences [q-bio]030104 developmental biologyEndocrinologymedicine.anatomical_structureantioxidantsinactivityFisiologia humanamedicine.symptombusinessHypoactivity030217 neurology & neurosurgeryOxidative stress[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct