Search results for "CONDUCTIVITY"
showing 10 items of 1988 documents
Coupling the Higgs mode and ferromagnetic resonance in spin-split superconductors with Rashba spin-orbit coupling
2022
We show that the Higgs mode of superconductors can couple with spin dynamics in the presence of a static spin-splitting field and Rashba spin-orbit coupling. The Higgs-spin coupling dramatically modifies the spin susceptibility near the superconducting critical temperature and consequently enhances the spin pumping effect in a ferromagnetic insulator/superconductor bilayer system. We show that this effect can be detected by measuring the magnon transmission rate and the magnon-induced voltage generated by the inverse spin Hall effect.
Superconducting Triplet Rim Currents in a Spin-Textured Ferromagnetic Disk
2022
Since the discovery of the long-range superconducting proximity effect, the interaction between spin-Triplet Cooper pairs and magnetic structures such as domain walls and vortices has been the subject of intense theoretical discussions, while the relevant experiments remain scarce. We have developed nanostructured Josephson junctions with highly controllable spin texture, based on a disk-shaped Nb/Co bilayer. Here, the vortex magnetization of Co and the Cooper pairs of Nb conspire to induce long-range triplet (LRT) superconductivity in the ferromagnet. Surprisingly, the LRT correlations emerge in highly localized (sub-80 nm) channels at the rim of the ferromagnet, despite its trivial band s…
Self-consistent calculation of the flux-flow conductivity in diffusive superconductors
2017
In the framework of Keldysh-Usadel kinetic theory, we study the temperature dependence of flux-flow conductivity (FFC) in diffusive superconductors. By using self-consistent vortex solutions we find the exact values of dimensionless parameters that determine the diffusion-controlled FFC both in the limit of the low temperatures and close to the critical one. Taking into account the electron-phonon scattering, we study the transition between flux-flow regimes controlled by either the diffusion or the inelastic relaxation of nonequilibrium quasiparticles. We demonstrate that the inelastic electron-phonon relaxation leads to the strong suppression of FFC compared to the previous estimates, mak…
Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors
2018
In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty two-band system with interband impurity scattering undergoes a sharp crossover between the s± state (which favors phase antilocking) and the s++ state (which favors phase locking). We discuss here that the situation can be much more complex in the presence of an external field or superconducting currents. In an external applied magnetic field, dirty two-band superconductors do not feature a sharp s±→s++ crossover but rather a washed-out crossover to a finite region in the parame…
Hierarchies of length-scale based typology in anisotropic U(1)s-wave multiband superconductors
2019
Since Ginzburg and Landau's seminal work in 1950, superconducting states have been classified by the hierarchy of the fundamental length scales of the theory, the magnetic-field penetration lengths and coherence lengths. In the simplest single-component case they form a dimensionless ratio κ. The model was generalized by Ginzburg for anisotropic materials in 1952. In this paper we expand the above length-scale analysis to anisotropic multicomponent superconductors that can have multiple coherence lengths as well as multiple magnetic-field penetration lengths, leading to unconventional length-scale hierarchies. We demonstrate that the anisotropies in multiband superconductors lead to new reg…
Topological polarization, dual invariants, and surface flat band in crystalline insulators
2020
We describe a three-dimensional crystalline topological insulator (TI) phase of matter that exhibits spontaneous polarization. This polarization results from the presence of (approximately) flat bands on the surface of such TIs. These flat bands are a consequence of the bulk-boundary correspondence of polarized topological media, and contrary to related nodal line semimetal phases also containing surface flat bands, they span the entire surface Brillouin zone. We also present an example Hamiltonian exhibiting a Lifshitz transition from the nodal line phase to the TI phase with polarization. Utilizing elasticity tetrads, we show a complete classification of 3D crystalline TI phases and invar…
Finite-frequency spin susceptibility and spin pumping in superconductors with spin-orbit relaxation
2020
Static spin susceptibility of superconductors with spin-orbit relaxation has been calculated in the seminal work of A.A. Abrikosov and L.P. Gor'kov [Sov. Phys. JETP, {\bf 15}, 752 (1962)]. Surprisingly the generalization of this result to finite frequencies has not been done despite being quite important for the modern topic of superconducting spintronics. The present paper fills this gap by deriving the analytical expression for spin susceptibility. The time-dependent spin response is shown to be captured by the quasiclassical Eilenberger equation with collision integrals corresponding to the ordinary and spin-orbit scattering. Using the developed formalism we study the linear spin pumping…
Proximity Effect in Superconducting Heterostructures with Strong Spin-Orbit Coupling and Spin Splitting
2019
It has been shown that singlet Cooper pairs can be converted into triplet ones and diffuse into a ferromagnet over a long distance in a phenomenon known as the long-range proximity effect (LRPE). This happens in materials with inhomogeneous magnetism or spin-orbit coupling (SOC). Most of the previous studies focus on the cases with small SOC and exchange field. However, the physics was not clear when SOC and exchange field strength are both much greater than the disorder strength. In this work, we consider a two dimensional system with a large Rashba-type SOC and exchange field in the case where only one band is partially occupied. We develop a generalized quasiclassical theory by projectin…
Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene
2019
We study superconductivity of twisted bilayer graphene with local and non-local attractive interactions. We obtain the superfluid weight and Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for microscopic tight-binding and low-energy continuum models. We predict qualitative differences between local and non-local interaction schemes which could be distinguished experimentally. In the flat band limit where the pair potential exceeds the band width we show that the superfluid weight and BKT temperature are determined by multiband processes and quantum geometry of the band.
Competition of electron-phonon mediated superconductivity and Stoner magnetism on a flat band
2018
The effective attractive interaction between electrons, mediated by electron-phonon coupling, is a well-established mechanism of conventional superconductivity. In metals exhibiting a Fermi surface, the critical temperature of superconductivity is exponentially smaller than the characteristic phonon energy. Therefore, such superconductors are found only at temperatures below a few kelvin. Systems with flat energy bands have been suggested to cure the problem and provide a route to room-temperature superconductivity, but previous studies are limited to only BCS models with an effective attractive interaction. Here we generalize Eliashberg's theory of strong-coupling superconductivity to syst…