Search results for "COPE"

showing 10 items of 3215 documents

Determination of Contact Potential Difference by the Kelvin Probe (Part I) I. Basic Principles of Measurements

2016

Abstract Determination of electric potential difference using the Kelvin probe, i.e. vibrating capacitor technique, is one of the most sensitive measuring procedures in surface physics. Periodic modulation of distance between electrodes leads to changes in capacitance, thereby causing current to flow through the external circuit. The procedure of contactless, non-destructive determination of contact potential difference between an electrically conductive vibrating reference electrode and an electrically conductive sample is based on precise control measurement of Kelvin current flowing through a capacitor. The present research is devoted to creation of a new low-cost miniaturised measuremen…

010302 applied physicsKelvin probe force microscopesurface potentialMaterials scienceCondensed matter physicsPhysicsQC1-999General EngineeringGeneral Physics and Astronomy01 natural sciencescontact potential differencekelvin probe0103 physical sciences010306 general physicsVolta potentialLatvian Journal of Physics and Technical Sciences
researchProduct

Magnetization reversal of the domain structure in the anti-perovskite nitride Co3FeN investigated by high-resolution X-ray microscopy

2016

We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co3FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nano…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainGeneral Physics and AstronomyMagnetic resonance force microscopyLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnologyMagnetic hysteresis01 natural sciencesMagnetic susceptibilityCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyX-ray magnetic circular dichroism0103 physical sciencesMagnetic force microscope0210 nano-technologyJournal of Applied Physics
researchProduct

The effects of the additive of Eu ions on elastic and electric properties of BaTiO3ceramics

2016

ABSTRACTThe BaTiO3 and BaTiO3+X%wt.Eu2O3 (X = 1, 2, 3) ceramics were prepared by a solid phase reaction. The structural and morphology studies were carried out by means of an X-ray diffraction technique and scanning electron microscopy, respectively. Elastic moduli were determined with the use of an ultrasonic method. The dielectric permittivity (ϵ′) and tanδ as a function of composition and temperature were investigated. The increasing concentration of Eu ions leads to a slight shift of the Curie temperature and changes the characteristics of ϵ′ and tanδ. The structural, mechanical and dielectric properties of the BTEX ceramics were discussed in terms of microstructure and dopants contents.

010302 applied physicsMaterials scienceDopantScanning electron microscopeMineralogy02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsIonControl and Systems Engineeringvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCurie temperatureCeramicElectrical and Electronic EngineeringComposite material0210 nano-technologyElastic modulusIntegrated Ferroelectrics
researchProduct

Stable and simple quantitative phase-contrast imaging by Fresnel biprism

2018

Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the be…

010302 applied physicsMaterials scienceMicroscopePhysics and Astronomy (miscellaneous)business.industryPhase-contrast imagingHolographyÒpticaLaserInterference (wave propagation)Holographic interferometry01 natural scienceslaw.invention010309 opticsOptical axisMicroscòpiaOpticslaw0103 physical sciencesMicroscopybusinessApplied Physics Letters
researchProduct

Morphological and magnetic analysis of Fe nanostructures on W(110) by using scanning tunneling microscopy and Lorentz microscopy

2016

Abstract We investigated morphological features and magnetic properties of epitaxial Fe nanostructures (films, stripes and nanoparticles) on a W(110) surface with monoatomic steps preferentially along the direction. The nanostructures were prepared in ultra-high vacuum by using electron-beam evaporation and subsequent annealing at different temperatures. Scanning tunneling microscopy measurements in-situ revealed elongated Fe nanostructures with aspect ratios of up to . The observable shape and orientation (along or perpendicular to the monoatomic steps of the substrate) of the nanostructures depended substantially on the preparation parameters. By capping the system with 7 monolayers of Pt…

010302 applied physicsMaterials scienceNanostructureCondensed matter physicsAnnealing (metallurgy)General EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural scienceslaw.inventionMagnetic fieldCondensed Matter::Materials ScienceCrystallographyMagnetizationlaw0103 physical sciencesMonolayerSingle domainScanning tunneling microscope0210 nano-technologyJapanese Journal of Applied Physics
researchProduct

Rhodamine (B) photocatalysis under solar light on high crystalline ZnO films grown by home-made DC sputtering

2018

Abstract ZnO thin films were deposited by home-made DC sputtering of zinc target under mixed gases (Argon, Oxygen) plasma on glass substrates. Films were deposited by varying oxygen partial pressure (PO2) from 0.09 to 1.3 mbar in the deposition chamber, at a fixed substrate temperature of 100 °C. The samples were characterized by photoluminescence (PL), X-ray diffraction (XRD), optical transmissions (UV–vis), scanning electron microscopy (SEM) and electrical (Hall effect) measurements. The results indicate that by varying the oxygen pressure in the deposition chamber, the films show a precise and well defined photoluminescence emissions for each range of pressure covering almost the entire …

010302 applied physicsMaterials sciencePhotoluminescenceZnO thin films Sputtering Photoluminescence Rhodamine (B) Solar light PhotocatalysisScanning electron microscopeBand gapAnalytical chemistry02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistrySputtering0103 physical sciencesPhotocatalysisRhodamine BElectrical and Electronic EngineeringThin film0210 nano-technology
researchProduct

Positron annihilation characterization of free volume in microand macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4ceramics

2016

Free volume and pore size distribution size in functional micro and macro-micro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics are characterized by positron annihilation lifetime spectroscopy in comparison with Hg-porosimetry and scanning electron microscopy technique. Positron annihilation results are interpreted in terms of model implication positron trapping and ortho-positronium decaying. It is shown that free volume of positron traps are the same type for macro and micro modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Classic Tao-Eldrup model in spherical approximation is used to calculation of the size of nanopores smaller than 2 nm using the ortho-positronium lifetime.

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Scanning electron microscopeGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsCharacterization (materials science)Nuclear physicsNanoporePositronVolume (thermodynamics)visual_art0103 physical sciencesvisual_art.visual_art_mediumCeramicPhysics::Chemical Physics0210 nano-technologyPorositySpectroscopy
researchProduct

Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs

2019

Abstract Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs was demonstrated in α- and β-TCP polymorphs prepared by wet precipitation method under identical conditions and annealed at 700 °C. Calcium phosphates with Mn doping level in the range from 1 to 5 mol% were studied and the formation of desired polymorph was controlled by varying Mn content in as-prepared precipitates. It was found that increasing Mn content resulted in the formation of β-TCP, while α-TCP was obtained with low Mn doping level, whereas a mixture of two polymorphs was obtained for intermediate Mn concentrations. Moreover, doping with Mn ions allowed the synthesis of β-TCP at …

010302 applied physicsMaterials sciencePrecipitation (chemistry)Scanning electron microscopeDopingInfrared spectroscopy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonlaw.inventionlaw0103 physical sciencesMaterials ChemistryCeramics and CompositesFourier transform infrared spectroscopyInductively coupled plasma0210 nano-technologyElectron paramagnetic resonanceNuclear chemistryJournal of the European Ceramic Society
researchProduct

Induced crystallographic changes in Cd1−xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≤ 0.5

2020

High-resolution X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques were used to investigate, as a function of the nominal Zn content in the range of 0–50%, the out-of-plane and in-plane crystallographic characteristics of Cd1−xZnxO films grown on r-plane sapphire substrates via atmospheric pressure metal–organic chemical vapor deposition. The study is conducted to search for knowledge relating to the structural details during the transition process from a rock-salt to a wurtzite structure as the Zn content increases in this CdO–ZnO system. It has been found that it is possible to obtain films exhibiting a single (001) cubic orientation with good …

010302 applied physicsMaterials scienceScanning electron microscope02 engineering and technologyGeneral ChemistryChemical vapor deposition021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCrystallographyTransmission electron microscopy0103 physical sciencesSapphireGeneral Materials ScienceOrthorhombic crystal systemCrystalliteMetalorganic vapour phase epitaxy0210 nano-technologyWurtzite crystal structureCrystEngComm
researchProduct

Reactive Sintering of molybdenum disilicide by Spark Plasma Sintering from mechanically activated powder mixtures: Processing parameters and properti…

2008

Abstract Dense molybdenum disilicide with a nano-organized microstructure was synthesized by mechanical activation, by producing nanostructured agglomerates of a 1:2 mixture of Mo and Si, followed by the synthesis/consolidation in one step using SPS technology. In order to synthesize a dense molybdenum disilicide with a perfectly controlled microstructure, an investigation of the influence of Spark Plasma Sintering processing parameters (temperature, heating rate, mechanical pressure and holding time) on the chemical composition and the microstructure characteristics has been performed. The present work shows also that the so-obtained materials present better oxidation resistance in compari…

010302 applied physicsMaterials scienceScanning electron microscopeMechanical EngineeringMetallurgyMetals and AlloysMolybdenum disilicideSpark plasma sinteringSintering02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructure01 natural scienceschemistry.chemical_compoundchemistryMechanics of MaterialsAgglomerate[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciencesOxidizing agentVickers hardness testMaterials Chemistry0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct