Search results for "COSMOLOGICAL CONSTANT"
showing 10 items of 54 documents
Exact spherically-symmetric inhomogeneous model withnperfect fluids
2011
We present the exact equations governing the dynamics of a spherically-symmetric inhomogeneous model with n decoupled and non-comoving perfect fluids. Thanks to the use of physically meaningful quantities we write the set of 3+2n equations in a concise and transparent way. The n perfect fluids can have general equations of state, thus making the model extremely flexible to study a large variety of cosmological and astrophysical problems. As applications we consider a model sourced by two non-comoving dust components and a cosmological constant, and a model featuring dust and a dark energy component with negligible speed of sound.
Background Independent Field Quantization with Sequences of Gravity-Coupled Approximants
2020
We outline, test, and apply a new scheme for nonpertubative analyses of quantized field systems in contact with dynamical gravity. While gravity is treated classically in the present paper, the approach lends itself for a generalization to full Quantum Gravity. We advocate the point of view that quantum field theories should be regularized by sequences of quasi-physical systems comprising a well defined number of the field's degrees of freedom. In dependence on this number, each system backreacts autonomously and self-consistently on the gravitational field. In this approach, the limit which removes the regularization automatically generates the physically correct spacetime geometry, i.e., …
Dark energy cosmologies for codimension-two branes
2005
A six-dimensional universe with two branes in the "football-shaped" geometry leads to an almost realistic cosmology. We describe a family of exact solutions with time dependent characteristic size of internal space. After a short inflationary period the late cosmology is either of quintessence type or turns to a radiation dominated Friedmann universe where the cosmological constant appears as a free integration constant of the solution. The radiation dominated universe with relativistic fermions is analyzed in detail, including its dimensional reduction.
On the Super Higgs Effect in Extended Supergravity
2002
We consider the reduction of supersymmetry in N-extended four dimensional supergravity via the super Higgs mechanism in theories without cosmological constant. We provide an analysis largely based on the properties of long and short multiplets of Poincare' supersymmetry. Examples of the super Higgs phenomenon are realized in spontaneously broken N=8 supergravity through the Scherk-Schwarz mechanism and in superstring compactification in presence of brane fluxes. In many models the massive vectors count the difference in number of the translation isometries of the scalar sigma-model geometries in the broken and unbroken phase.
Gravitational waves in the presence of a cosmological constant
2011
We derive the effects of a non-zero cosmological constant $\Lambda$ on gravitational wave propagation in the linearized approximation of general relativity. In this approximation we consider the situation where the metric can be written as $g_{\mu\nu}= \eta_{\mu\nu}+ h_{\mu\nu}^\Lambda + h_{\mu\nu}^W$, $h_{\mu\nu}^{\Lambda,W}<< 1$, where $h_{\mu\nu}^{\Lambda}$ is the background perturbation and $h_{\mu\nu}^{W}$ is a modification interpretable as a gravitational wave. For $\Lambda \neq 0$ this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized…
Cosmology with self-adjusting vacuum energy density from a renormalization group fixed point
2001
Cosmologies with a time dependent Newton constant and cosmological constant are investigated. The scale dependence of $G$ and $\Lambda$ is governed by a set of renormalization group equations which is coupled to Einstein's equation in a consistent way. The existence of an infrared attractive renormalization group fixed point is postulated, and the cosmological implications of this assumption are explored. It turns out that in the late Universe the vacuum energy density is automatically adjusted so as to equal precisely the matter energy density, and that the deceleration parameter approaches $q = -1/4$. This scenario might explain the data from recent observations of high redshift type Ia S…
The cosmological constant problem in codimension-two brane models
2005
We discuss the possibility of a dynamical solution to the cosmological constant problem in the contaxt of six-dimensional Einstein-Maxwell theory. A definite answer requires an understanding of the full bulk cosmology in the early universe, in which the bulk has time-dependent size and shape. We comment on the special properties of codimension two as compared to higher codimensions.
A class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior
2002
Motivated by the conjecture that the cosmological constant problem could be solved by strong quantum effects in the infrared we use the exact flow equation of Quantum Einstein Gravity to determine the renormalization group behavior of a class of nonlocal effective actions. They consist of the Einstein-Hilbert term and a general nonlinear function F(k, V) of the Euclidean space-time volume V. A partial differential equation governing its dependence on the scale k is derived and its fixed point is analyzed. For the more restrictive truncation of theory space where F(k, V) is of the form V+V ln V, V+V^2, and V+\sqrt{V}, respectively, the renormalization group equations for the running coupling…
Renormalization group improved gravitational actions: A Brans-Dicke approach
2003
A new framework for exploiting information about the renormalization group (RG) behavior of gravity in a dynamical context is discussed. The Einstein-Hilbert action is RG-improved by replacing Newton's constant and the cosmological constant by scalar functions in the corresponding Lagrangian density. The position dependence of $G$ and $\Lambda$ is governed by a RG equation together with an appropriate identification of RG scales with points in spacetime. The dynamics of the fields $G$ and $\Lambda$ does not admit a Lagrangian description in general. Within the Lagrangian formalism for the gravitational field they have the status of externally prescribed ``background'' fields. The metric sat…
Quantum Effects in Black Holes from the Schwarzschild Black String?
2007
The holographic conjecture for black holes localized on a 3-brane in Randall-Sundrum braneworld models RS2 predicts the existence of a classical 5D time dependent solution dual to a 4D evaporating black hole. After briefly reviewing recent criticism and presenting some difficulties in the holographic interpretation of the Gregory-Laflamme instability, we simulate some basic features of such a solution by studying null geodesics of the Schwarzschild black string, in particular those propagating nontrivially in the bulk, and using holographic arguments.